Controlling the Flow around a Circular Cylinder by Means of a Corona Discharge


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of electric wind produced by a positive corona discharge on the air flow around a circular cylinder at Reynolds numbers of 2400 and 3200 is investigated. The geometry of cylinder–wire electrodes is considered for two positions of the corona electrode relative to the cylinder: one wire behind the cylinder and two symmetrical wires above and below the cylinder. A direct numerical simulation of the electrohydrodynamic problem is performed using an original unipolar model of the corona discharge. The effect of a thin jet of electric wind directed from the corona electrode to the cylinder on the structure of the vortex wake behind the cylinder and the drag force is considered. It is shown that, when two corona electrodes are located above and below the cylinder, the electric wind prevents the formation of a Karman vortex street and significantly reduces the air drag of the cylinder. If the discharge electrode is located behind the cylinder, the corona discharge and the electric wind lead to the formation and development of large vortices in the wake behind the cylinder, which leads to significant fluctuations in its air drag. It is shown that a corona discharge significantly changes the characteristics of the Karman vortex street: as the voltage increases to 30 kV, the vortex shedding frequency decreases by a factor of 2.5 and the sizes of the vortices and their rotation velocity noticeably increase. The drag force is quasi-periodic and its mean value linearly depends on the corona voltage.

作者简介

M. Renev

St. Petersburg State University

Email: y.safronova@spbu.ru
俄罗斯联邦, St. Petersburg, 199034

Yu. Safronova

St. Petersburg State University

编辑信件的主要联系方式.
Email: y.safronova@spbu.ru
俄罗斯联邦, St. Petersburg, 199034

Yu. Stishkov

St. Petersburg State University

Email: y.safronova@spbu.ru
俄罗斯联邦, St. Petersburg, 199034


版权所有 © Pleiades Publishing, Ltd., 2019
##common.cookie##