Interaction of an Optical Discharge with a Shock Wave
- Autores: Zudov V.N.1, Tret’yakov P.K.1
- 
							Afiliações: 
							- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch
 
- Edição: Volume 63, Nº 3 (2018)
- Páginas: 339-346
- Seção: Gases and Liquids
- URL: https://journals.rcsi.science/1063-7842/article/view/200895
- DOI: https://doi.org/10.1134/S1063784218030258
- ID: 200895
Citar
Resumo
The results of an experimental study of the impact of the focused pulsed-periodic radiation from a CO2 laser on a gas-dynamic structure in a supersonic jet are presented. The radiation of the CO2 laser is propagated across the stream and focused by a lens on the axis of the supersonic jet. To register the flow structure, a shadow scheme with a slit and a flat knife located along the flow is used. The image is fixed by a speed camera with an exposure time of 1.5 μs and a frame rate of 1000 1/s. In the flow, the plasma initiated by the pulsedperiodic laser is visualized in order to identify and determine the period of plasma development, as well as the motion of the initial front of the shock wave. It is shown that at the transverse input of laser radiation into the stream the periodic structure of the thermal trace is created with the formation of an unsteady shock wave from the energy release zone. At small repetition rates of laser radiation pulses, the thermal spot interacts with the flow in the pulsed mode. It is shown that elliptic nonstationary shock waves are formed only at low subsonic flow velocities and in a stationary atmosphere. The process of nonstationary ignition by an optical discharge of a methane–air mixture during a subsonic outflow into a motionless atmosphere is shown experimentally. The results of optical visualization indicate burning in the trace behind the optical discharge region.
Sobre autores
V. Zudov
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch
							Autor responsável pela correspondência
							Email: zudov@itam.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090						
P. Tret’yakov
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch
														Email: zudov@itam.nsc.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090						
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					