Study of Plasma Flow Modes in Imploding Nested Arrays


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 МА at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic (Vr < VА) and super-Alfvénic (Vr > VА) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates in /out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh−Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

Sobre autores

K. Mitrofanov

Troitsk Institute for Innovation and Fusion Research

Autor responsável pela correspondência
Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190

V. Aleksandrov

Troitsk Institute for Innovation and Fusion Research

Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190

A. Gritsuk

Troitsk Institute for Innovation and Fusion Research

Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190

A. Branitsky

Troitsk Institute for Innovation and Fusion Research

Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190

I. Frolov

Troitsk Institute for Innovation and Fusion Research

Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190

E. Grabovski

Troitsk Institute for Innovation and Fusion Research

Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190

P. Sasorov

Troitsk Institute for Innovation and Fusion Research; Keldysh Institute of Applied Mathematics

Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190; Moscow, 125047

O. Ol’khovskaya

Keldysh Institute of Applied Mathematics

Email: mitrofan@triniti.ru
Rússia, Moscow, 125047

V. Zaitsev

Troitsk Institute for Innovation and Fusion Research

Email: mitrofan@triniti.ru
Rússia, Troitsk, Moscow, 142190

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018