Study of the Compression of a Condensed Deuterated Target Installed on the Wire Array Axis
- Autores: Aleksandrov V.V.1, Volkov G.S.1, Grabovski E.V.1, Gritsuk A.N.1, Volobuev I.V.2, Kalinin Y.G.3, Korolev V.D.3, Laukhin Y.N.1, Medovshchikov S.F.1, Mitrofanov K.N.1, Oleinik G.M.1, Pimenov V.G.4, Smirnova E.A.3, Frolov I.N.1
-
Afiliações:
- Troitsk Institute for Innovation and Fusion Research
- Lebedev Physical Institute, Russian Academy of Sciences
- National Research Center “Kurchatov Institute”
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Edição: Volume 45, Nº 9 (2019)
- Páginas: 805-820
- Seção: Plasma Dynamics
- URL: https://journals.rcsi.science/1063-780X/article/view/187030
- DOI: https://doi.org/10.1134/S1063780X19090022
- ID: 187030
Citar
Resumo
The implosion of combined loads consisting of an outer wire (fiber) array and inner cylindrical target was studied experimentally at the Angara-5-1 facility (3.5 MA, 100 ns) at currents of up to 3.5 MA. The experiments were carried out with 12- and 20-mm-diameter outer arrays made of 15-μm-diameter aluminum wires, composite arrays made of aluminum wires and 25-μm-diameter kapron fibers, and arrays made of kapron fibers with a 1-μm-thick aluminum coating. The number of wires varied from 10 to 40. The targets were made of agar-agar or low-density deuterated polyethylene. The parameters of the Z-pinch plasma were determined using the Angara-5-1 diagnostic complex, which included optical streak cameras, X-ray frame cameras, X-ray detectors, X-ray pinhole cameras, neutron detectors, and a mica-crystal X-ray spectrograph. It is established that the plasma compression dynamics and the formation of local plasma structures generating neutrons depend on the load configuration: the array diameter, the number of wires (fibers), and the diameter and density of the target. The most efficient compression and the highest plasma parameters (the compression ratio and plasma temperature), as well as the highest neutron yield, were achieved in experiments with 12-mm-diameter aluminum wire arrays inside which a 1-mm-diameter deuterated target with a mass density of 0.3 g/cm3 was installed As a result of collision of the bulk of the array mass with the inner target, a compact pinch with a diameter of ≈0.5 mm forms. The pinch formation is accompanied by the generation of a soft X-ray pulse. The development of MHD instabilities in the pinch plasma results in the formation of multiple hot spots (HSs) on the pinch axis with a typical size of 200–300 μm and an electron temperature of 0.4–0.7 keV. The HS formation is accompanied by emission of neutrons with a mean energy of 2.7 ± 0.2 MeV. The maximum neutron yield achieved in these experiments was 2.6 × 1010 neutrons/shot.
Sobre autores
V. Aleksandrov
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
G. Volkov
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
E. Grabovski
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
A. Gritsuk
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
I. Volobuev
Lebedev Physical Institute, Russian Academy of Sciences
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 119991
Yu. Kalinin
National Research Center “Kurchatov Institute”
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 123182
V. Korolev
National Research Center “Kurchatov Institute”
Autor responsável pela correspondência
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 123182
Ya. Laukhin
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
S. Medovshchikov
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
K. Mitrofanov
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
G. Oleinik
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
V. Pimenov
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 119991
E. Smirnova
National Research Center “Kurchatov Institute”
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 123182
I. Frolov
Troitsk Institute for Innovation and Fusion Research
Email: Korolev_VD@nrcki.ru
Rússia, Moscow, 142190
Arquivos suplementares
