Delayed Multineutron Emission in the Region of Heavy Calcium Isotopes


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A brief survey of self-consistent models used to perform global calculations of β-decay properties of neutron-rich nuclei is given. These models include the continuum quasiparticle randomphase approximation (CQRPA) based on the energy density functional (DF) proposed by Fayans and his colleagues (DF + CQRPA), relativistic quasiparticle random-phase approximation (RQRPA), and the finite-amplitude method (FAM). These models take into account allowed Gamow–Teller transitions and first-forbidden transitions. Models that allow for complex configurations beyond the QRPA framework are also analyzed. The β-decay properties of heavy calcium, potassium, and scandium isotopes in the vicinity of the N = 32 and 34 neutron subshells, which are new magic subshells for neutrons, are calculated on the basis of the self-consistent DF + CQRPA approach. The predicted high probability for two-neutron emission is found to be correlated with the anomalous nuclear radii measured for potassium and calcium isotopes in the region around N = 32. The results ofDF3 + CQRPA calculations are compared with their counterparts obtained within the self-consistent models implemented with the SkO’ Skyrme functional and the D3C* relativistic functional.

作者简介

I. Borzov

National Research Center Kurchatov Institute; Bogolyubov Laboratory for Theoretical Physics

编辑信件的主要联系方式.
Email: ibor48@mail.ru
俄罗斯联邦, Moscow, 123182; Dubna, 141980

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018