Ашық рұқсат Ашық рұқсат  Рұқсат жабық Рұқсат берілді  Рұқсат жабық Тек жазылушылар үшін

Том 80, № 7 (2017)

Article

Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?

Strelkov V.

Аннотация

This paper summarizes results of more than half a century of research of high-temperature plasmas heated to a temperature of more than 100 million degrees (104 eV) and magnetically insulated from the walls. The energy of light-element fusion сan be used for electric power generation or as a source of fissionable fuel production (development of a fusion neutron source—FNS). The main results of studies of tokamak plasmas which were obtained in the Soviet Union with the greatest degree of thermal plasma isolation among all other types of devices are presented. As a result, research programs of other countries were redirected to tokamaks. Later, on the basis of the analysis of numerous experiments, the international fusion community gradually came to an opinion that it is possible to build a tokamak (ITER) with Q > 1 (where Q is the ratio of the fusion power to the external power injected into the plasma). The ITER program objective is to achieve Q = 1–10 for a discharge time of up to 1000 s. The implementation of this goal does not solve the problem of a steadystate operation. The solution to this problem is a reliable first wall and current generation. This is a task of the next fusion power plant construction stage, called DEMO. Comparison of DEMO and FNS parameters shows that, at this development stage, the operating parameters and conditions of these devices are identical.

Physics of Atomic Nuclei. 2017;80(7):1211-1219
pages 1211-1219 views

Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

Tsibulskiy V., Andrianova E., Davidenko V., Rodionova E., Tsibulskiy S.

Аннотация

A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium–plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

Physics of Atomic Nuclei. 2017;80(7):1220-1226
pages 1220-1226 views

Cryogenic Hydrogen Fuel for Controlled Inertial Confinement Fusion (Cryogenic Target Factory Concept Based on FST-Layering Method)

Aleksandrova I., Koresheva E., Koshelev I., Krokhin O., Nikitenko A., Osipov I.

Аннотация

A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.

Physics of Atomic Nuclei. 2017;80(7):1227-1248
pages 1227-1248 views

Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

Leshukov A., Strebkov Y., Sviridenko M., Safronov V., Putrik A.

Аннотация

In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 “Blanket First Wall” of February 14, 2014, and 1.6.P3.RF.01 “Blanket Module Connections” of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015–2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

Physics of Atomic Nuclei. 2017;80(7):1249-1260
pages 1249-1260 views

Movement of the Melt Metal Layer under Conditions Typical of Transient Events in ITER

Poznyak I., Safronov V., Zybenko V.

Аннотация

During the operation of ITER, protective coatings of the divertor and the first wall will be exposed to significant plasma heat loads which may cause a huge erosion. One of the major failure mechanisms of metallic armor is diminution of their thickness due to the melt layer displacement. New experimental data are required in order to develop and validate physical models of the melt layer movement. The paper presents the experiments where metal targets were irradiated by a plasma stream at the quasi-stationary high-current plasma accelerator QSPA-T. The obtained data allow one to determine the velocity and acceleration of the melt layer at various distances from the plasma stream axis. The force causing the radial movement of the melt layer is shown to create an acceleration whose order of magnitude is 1000g. The pressure gradient is not responsible for creating this large acceleration. To investigate the melt layer movement under a known force, the experiment with a rotating target was carried out. The influence of centrifugal and Coriolis forces led to appearance of curved elongated waves on the surface. The surface profile changed: there is no hill in the central part of the erosion crater in contrast to the stationary target. The experimental data clarify the trends in the melt motion that are required for development of theoretical models.

Physics of Atomic Nuclei. 2017;80(7):1261-1267
pages 1261-1267 views

Design Features of the Neutral Particle Diagnostic System for the ITER Tokamak

Petrov S., Kozlovski S., Lyublin B., Kuzmin E., Kedrov I., Chernyshev F., Petrov M., Nesenevich V., Navolotsky A., Mironov M., Melnik A., Afanasyev V., Mokeev A.

Аннотация

The control of the deuterium–tritium (DT) fuel isotopic ratio has to ensure the best performance of the ITER thermonuclear fusion reactor. The diagnostic system described in this paper allows the measurement of this ratio analyzing the hydrogen isotope fluxes (performing neutral particle analysis (NPA)). The development and supply of the NPA diagnostics for ITER was delegated to the Russian Federation. The diagnostics is being developed at the Ioffe Institute. The system consists of two analyzers, viz., LENPA (Low Energy Neutral Particle Analyzer) with 10–200 keV energy range and HENPA (High Energy Neutral Particle Analyzer) with 0.1–4.0MeV energy range. Simultaneous operation of both analyzers in different energy ranges enables researchers to measure the DT fuel ratio both in the central burning plasma (thermonuclear burn zone) and at the edge as well. When developing the diagnostic complex, it was necessary to account for the impact of several factors: high levels of neutron and gamma radiation, the direct vacuum connection to the ITER vessel, implying high tritium containment, strict requirements on reliability of all units and mechanisms, and the limited space available for accommodation of the diagnostic hardware at the ITER tokamak. The paper describes the design of the diagnostic complex and the engineering solutions that make it possible to conduct measurements under tokamak reactor conditions. The proposed engineering solutions provide a safe—with respect to thermal and mechanical loads—common vacuum channel for hydrogen isotope atoms to pass to the analyzers; ensure efficient shielding of the analyzers from the ITER stray magnetic field (up to 1 kG); provide the remote control of the NPA diagnostic complex, in particular, connection/disconnection of the NPA vacuum beamline from the ITER vessel; meet the ITER radiation safety requirements; and ensure measurements of the fuel isotopic ratio under high levels of neutron and gamma radiation.

Physics of Atomic Nuclei. 2017;80(7):1268-1278
pages 1268-1278 views

Nuclear and Physical Properties of Dielectrics under Neutron Irradiation in Fast (BN-600) and Fusion (DEMO-S) Reactors

Blokhin D., Chernov V., Blokhin A.

Аннотация

Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.

Physics of Atomic Nuclei. 2017;80(7):1279-1284
pages 1279-1284 views

Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

Borisov A., Deryabina N., Markovskij D.

Аннотация

Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing “expensive” experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor based on the average responses of the horizontal and vertical neutron chambers remains spatially stable as the source moves and can be used in addition to the staff monitor at neutron fluxes in the detectors four orders of magnitude lower than on the first wall, where staff detectors are located. Owing to low background, detectors of neutron chambers do not need calibration in the reactor because it is actually determination of the absolute detector efficiency for 14-MeV neutrons, which is a routine out-of-reactor procedure.

Physics of Atomic Nuclei. 2017;80(7):1285-1297
pages 1285-1297 views

Study of Globus-M Tokamak Poloidal System and Plasma Position Control

Dokuka V., Korenev P., Mitrishkin Y., Pavlova E., Patrov M., Khayrutdinov R.

Аннотация

In order to provide efficient performance of tokamaks with vertically elongated plasma position, control systems for limited and diverted plasma configuration are required. The accuracy, stability, speed of response, and reliability of plasma position control as well as plasma shape and current control depend on the performance of the control system. Therefore, the problem of the development of such systems is an important and actual task in modern tokamaks. In this study, the measured signals from the magnetic loops and Rogowski coils are used to reconstruct the plasma equilibrium, for which linear models in small deviations are constructed. We apply methods of the H∞-optimization theory to the synthesize control system for vertical and horizontal position of plasma capable to working with structural uncertainty of the models of the plant. These systems are applied to the plasma-physical DINA code which is configured for the tokamak Globus-M plasma. The testing of the developed systems applied to the DINA code with Heaviside step functions have revealed the complex dynamics of plasma magnetic configurations. Being close to the bifurcation point in the parameter space of unstable plasma has made it possible to detect an abrupt change in the X-point position from the top to the bottom and vice versa. Development of the methods for reconstruction of plasma magnetic configurations and experience in designing plasma control systems with feedback for tokamaks provided an opportunity to synthesize new digital controllers for plasma vertical and horizontal position stabilization. It also allowed us to test the synthesized digital controllers in the closed loop of the control system with the DINA code as a nonlinear model of plasma.

Physics of Atomic Nuclei. 2017;80(7):1298-1306
pages 1298-1306 views

On the Toroidal Surfaces of Revolution with Constant Mean Curvatures

Ilgisonis V., Skovoroda A., Sorokina E.

Аннотация

It is shown that the surface with a constant mean curvature encloses the extremal volume among all toroidal surfaces of given area. The exact solution for the corresponding variational problem is derived, and its parametric analysis is performed in the limits of high and small mean curvatures. An absence of smooth torus with constant mean curvature is proved, and the extremal surface is demonstrated to have at least one edge located on the outer side of the torus.

Physics of Atomic Nuclei. 2017;80(7):1307-1312
pages 1307-1312 views

Zero-Dimensional Model to Study the Effectiveness of Plasma Heating and Thermal Energy Confinement in Globus-M Tokamak in Ohmic Heating Modes

Kurskiev G., Tolstyakov S., Telnova A., Petrov Y., Patrov M., Miroshnikov I., Minaev V., Iblyaminova A., Gusev V., Avdeeva G., Kiselev E., Bakharev N., Schegolev P., Sakharov N., Tokarev V.

Аннотация

Experimental study of thermal energy confinement in magnetic confinement devices is one of the fundamental problems in plasma physics. The data processing technique covering kinetic and magnetic measurements performed for the Globus-M tokamak is described. A zero-dimensional code has been developed on the basis of this approach making it possible to calculate important discharge parameters during the experiment (between discharges): the electron and ion stored thermal energy content, plasma effective charge, and confinement time. Good agreement of the zero-dimensional calculations and ASTRA modeling indicates that this approach can be applied for routine data processing in Globus-M in view of the specifics of the device.

Physics of Atomic Nuclei. 2017;80(7):1313-1319
pages 1313-1319 views

Study of Conditions for Obtaining Quasi-Stationary Scenarios in T-15 MD Tokamak

Leonov V.

Аннотация

The study of conditions for obtaining quasi-stationary scenarios in the T-15MD tokamak is performed. Results of simulation and optimization of T-15MD regimes with a fully noninductive current drive using NBICD systems with the power of 6–8 MW, ECCD system with the power ~8 MW, and RFCD system with power up to 7–8 MW are presented. It is shown that, at the somewhat reduced value as compared to the basic value of the toroidal magnetic field Bt ~ 1.5 T in the T-15MD tokamak, discharges can be produced with a fully noninductive current of about 1 MA, plasma temperature of several keV, plasma density of about (3–7) × 1019 m–3, and discharge duration of about 20 s. Such discharges are of interest for further experimental study.

Physics of Atomic Nuclei. 2017;80(7):1320-1326
pages 1320-1326 views

Tangential System of Thomson Scattering for Tokamak T-15

Asadulin G., Bel’bas I., Gorshkov A.

Аннотация

Two systems of Thomson scattering diagnostics, with vertical and tangential probing, are used in the D-shaped plasma cross section in tokamak T-15. The tangential system allows measuring plasma temperature and density profiles along the major radius of the tokamak. This paper presents the tangential system project. The system is based on a Nd:YAG laser with wavelength of 1064 nm, pulse energy of 3 J, pulse duration of 10 ns, and repetition rate of 100 Hz. The chosen geometry allows collecting light from ten uniformly spaced points. Optimization of the registration system has been accomplished. The collected light will be transmitted through an optical fiber bundle with diameter of 3 mm and quartz fibers (numerical aperture is 0.22). Six-channel polychromators based on high-contrast interference filters have been chosen as spectral equipment. The radiation will be registered by avalanche photodiodes. The technique of electron temperature and density measurement is described, and estimation of its accuracy is carried out. The proposed system allows measuring the electron temperature with accuracy not worse than 10% within the range of 50 eV to 10 keV on the pinch edge over the internal contour, from 20 eV to 9 keV in the plasma central region, and from 2 eV to 400 eV on the pinch edge over the outer contour. The estimation is made for electron density of not less than 2.6 × 1013 cm–3.

Physics of Atomic Nuclei. 2017;80(7):1327-1331
pages 1327-1331 views