On a Microscopic Representation of Space-Time VIII—On Relativity
- Авторлар: Dahm R.1
-
Мекемелер:
- Beratung für Informationssysteme und Systemintegration
- Шығарылым: Том 81, № 6 (2018)
- Беттер: 819-825
- Бөлім: Elementary Particles and Fields
- URL: https://journals.rcsi.science/1063-7788/article/view/196043
- DOI: https://doi.org/10.1134/S1063778818060108
- ID: 196043
Дәйексөз келтіру
Аннотация
Based on the previous work on the Dirac algebra and su*(4) Lie algebra generators, using Lie transfer we have associated spin to line and Complex reps. Here, we discuss the construction of a Lagrangian in terms of invariant theory using lines or linear Complex reps like Fμν, its dual Fαβ, or even quadratic terms like e.g. FμνFμν, or FaμνFaμν with respect to regular linear Complexe. In this context, we sketch briefly the more general framework of quadratic Complexe and show how special relativistic coordinate transformations can be obtained from (invariances with respect to) line transformations. This comprises the action of the Dirac algebra on 4×2 “spinors”, real as well as complex. We discuss a classical picture to relate photons to linear line Complexe so that special relativity emerges naturally from a special line (or line Complex) invariance, and compare to Minkowski’s fundamental paper on special relativity. Finally, we give a brief outlook on how to generalize this approach to general relativity using advanced projective and (line) Complex geometry related to P5 and the Plücker–Klein quadric as well as transfer principles.
Авторлар туралы
Rolf Dahm
Beratung für Informationssysteme und Systemintegration
Хат алмасуға жауапты Автор.
Email: dahm@bf-IS.de
Германия, Gärtnergasse 1, Mainz, D-55116
Қосымша файлдар
