Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory
- 作者: Andriyash A.V.1, Astashkin M.V.2, Baranov V.K.2, Golubinskii A.G.2, Irinichev D.A.2, Kondrat’ev A.N.1, Kuratov S.E.1, Mazanov V.A.2, Rogozkin D.B.1,3, Stepushkin S.N.2, Khatunkin V.Y.2
-
隶属关系:
- All-Russia Research Institute of Automatics
- All-Russia Research Institute of Experimental Physics (VNIIEF)
- National Research Nuclear University MEPhI
- 期: 卷 122, 编号 6 (2016)
- 页面: 970-983
- 栏目: Atoms, Molecules, Optics
- URL: https://journals.rcsi.science/1063-7761/article/view/190303
- DOI: https://doi.org/10.1134/S1063776116050150
- ID: 190303
如何引用文章
详细
The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wave pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.
作者简介
A. Andriyash
All-Russia Research Institute of Automatics
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, ul. Sushchevskaya, Moscow, 127055
M. Astashkin
All-Russia Research Institute of Experimental Physics (VNIIEF)
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, Sarov, Nizhny Novgorod oblast, 607188
V. Baranov
All-Russia Research Institute of Experimental Physics (VNIIEF)
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, Sarov, Nizhny Novgorod oblast, 607188
A. Golubinskii
All-Russia Research Institute of Experimental Physics (VNIIEF)
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, Sarov, Nizhny Novgorod oblast, 607188
D. Irinichev
All-Russia Research Institute of Experimental Physics (VNIIEF)
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, Sarov, Nizhny Novgorod oblast, 607188
A. Kondrat’ev
All-Russia Research Institute of Automatics
编辑信件的主要联系方式.
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, ul. Sushchevskaya, Moscow, 127055
S. Kuratov
All-Russia Research Institute of Automatics
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, ul. Sushchevskaya, Moscow, 127055
V. Mazanov
All-Russia Research Institute of Experimental Physics (VNIIEF)
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, Sarov, Nizhny Novgorod oblast, 607188
D. Rogozkin
All-Russia Research Institute of Automatics; National Research Nuclear University MEPhI
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, ul. Sushchevskaya, Moscow, 127055; Kashirskoe sh. 31, Moscow, 115409
S. Stepushkin
All-Russia Research Institute of Experimental Physics (VNIIEF)
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, Sarov, Nizhny Novgorod oblast, 607188
V. Khatunkin
All-Russia Research Institute of Experimental Physics (VNIIEF)
Email: an.kondratev@physics.msu.ru
俄罗斯联邦, Sarov, Nizhny Novgorod oblast, 607188
补充文件
