


Vol 60, No 7 (2016)
- Year: 2016
- Articles: 7
- URL: https://journals.rcsi.science/1063-7729/issue/view/11906
Article
Long-term variability of active galactic nuclei from the ”Planck” catalog
Abstract
A complete sample of 104 bright active galactic nuclei (AGNs) from the “Planck” catalog (early results) were observed at 36.8 GHz with the 22-m radio telescope of the Crimean Astrophysical Observatory (CrAO).Variability indices of the sources at this frequency were determined based on data from theWMAP space observatory, theMetsa¨ hovi RadioObservatory (Finland), and the CrimeanAstrophysical Observatory. New observational results confirm that the variability of these AGNs is stronger in the millimeter than at other radio wavelengths. The variability indices probably change as a result of the systematic decrease in the AGN flux densities in the transition to the infrared. Some radio sources demonstrate significant flux-density variations, including decreases, which sometimes cause them to fall out of the analysed sample. The change of the variability index in the millimeter is consistent with the suggestion that this variability is due to intrinsic processes in binary supermassive black holes at an evolutionary stage close to coalescence. All 104 of the sources studied are well known objects that are included in various radio catalogs and have flux densities exceeding 1 Jy at 36.8 GHz.



Sources of the RCR catalog with normal and flat spectra according to data from the Planck microwave survey
Abstract
Fields of the Planck cosmic-microwave background maps in the regions of radio sources of the RCR catalog have been studied. Using measurements from the Planck catalog, calibration curves have been plotted in order to determine the objects’ luminosities. The flux densities at millimeter and submillimeter wavelengths of 83 objects with normal radio spectra have been estimated for the first time; their spectra have also been constructed, they have been optically identified, and information available in various databases has been collected. A statistical comparison with a sample of sources with steep radio spectra has been carried out. Faint, difficult to characterize microwave sources make an additional contribution to the secondary anisotropy on angular scales < 7′. An algorithm for selecting candidate objects with the Sunyaev–Zel’dovich effect has been proposed, based on the use of data on the radio spectral indices and the signal in cosmic-microwave background maps.



Neutronization of matter in a stellar core and convection during gravitational collapse
Abstract
The roles of neutrinos and convective instability in collapsing supernovae are considered. Spherically symmetrical computations of the collapse using the Boltzmann equation for the neutrinos lead to the formation of the condition of convective instability, \({\left( {\frac{{\partial P}}{{\partial s}}} \right)_{\rho {Y_l}}}\frac{{ds}}{{dr}} + {\left( {\frac{{\partial P}}{{\partial {Y_L}}}} \right)_{\rho s}}\frac{{d{Y_L}}}{{dr}}\) < 0, in a narrow region of matter accretion above the neutrinosphere. If instability arises in this region, the three-dimensional solution will represent a correction to the spherically symmetrical solution for the gravitational collapse. The mean neutrino energies change only negligibly in the narrow region of accretion. Nuclear statistical equilibrium is usually assumed in the hot proto-neutron stellar core, to simplify the computations of the collapse. Neutronization with the participation of free neutrons is most efficient. However, the decay of nuclei into nucleons is hindered during the collapse, because the density grows too rapidly compared to the growth in the temperature, and an appreciable fraction of the energy is carried away by neutrinos. The entropy of the matter per nucleon is modest at the stellar center. All the energy is in degenerate electrons during the collapse. If the large energy of these degenerate electrons is taken into account, neutrons are efficiently formed, even in cool matter with reduced Ye (the difference between the numbers of electrons and positrons per nucleon). This process brings about an increase in the optical depth to neutrinos, the appearance of free neutrons, and an increase in the entropy per nucleon at the center. The convectively unstable region at the center increases. The development of large-scale convection is illustrated using a multi-dimensional gas-dynamical model for the evolution of a stationary, unstable state (without taking into account neutrino transport). The time for the development of convective instability (several milliseconds) does not exceed the time for the existence of the unstable region at the center (10ms). The realization of this type of instability is fundamentally different from a spherically symmetrical model. The flux of neutrinos changes and the mean energy of the neutrinos is increased, which has important implications for the detection of neutrinos from supernovae. For these same reasons, the energy absorped in the supernova envelope also changes in the transition to such a multi-dimensional model.



The evolution of hydrocarbon dust grains in the interstellar medium and its influence on the infrared spectra of dust
Abstract
Computations of the evolution of the distributions of the size and degree of aromatization of interstellar dust grains, destruction by radiation and collisions with gas particles, and fragmentation during collisions with other grains are presented. The results of these computations are used to model dust emission spectra. The evolution of an ensemble of dust particles sensitively depends on the initial size distribution of the grains. Radiation in the considered range of fluxes mainly aromatizes grains. With the exception of the smallest grains, it is mainly erosion during collisions with gas particles that leads to the destruction of grains. In the presence of particle velocities above 50 km/s, characteristic for shocks in supernova remnants, grains greater than 20 Å in size are absent. The IR emission spectrum changes appreciably during the evolution of the dust, and depends on the adopted characteristics of the grains, in particular, the energy of their C–Cbonds (E0). Aromatic bands are not observed in the near-IR (2–15 μm) when E0 is low, even when the medium characteristics are typical for the average interstellarmedium in our Galaxy; this indicates a preference for high E0 values. The influence of the characteristics of the medium on the intensity ratios for the dust emission in various photometric bands is considered. The I3.4/I11.3 intensity ratio is most sensitive to the degree of aromatization of small grains. The I3.3/I70+160 ratio is a sensitive indicator of the contribution of aromatic grains to the total mass of dust.



Oppositely directed waves of stellar activity in simple dynamo models
Abstract
Excitations of two oppositely directed waves of stellar activity generated by two dynamo-active layers located in a single stellar hemisphere are examined using simple dynamo models. The domains of model parameters corresponding to various types and directions of the activity waves are found. It is shown that oppositely directed waves of activity are generated if the dynamo numbers have the same order of magnitude, ~105−106, but opposite signs. How frequently this case can be observed among real stars remains open to question. The report of oppositely directed waves of stellar activity in the literature is especially valuable in this connection.



Suprathermal ions in solar-wind outflows from coronal holes at 1 AU
Abstract
The energy spectra and relative abundances of 3He, 4He, C, O, and Fe ions with energies of ~0.04–2 MeV/nucleon are studied using data from the ULEIS instrument on board the ACE spacecraft obtained during quiescent periods in 2006–2012. During the unique, prolonged minimum between cycles 23 and 24, 35 quiescent periods were distnguished, during which solar-wind flows from near-equatorial coronal holes (CHs) were detected. It is shown that the C/O and Fe/O ratios for suprathermal ions correspond to the relative abundances of the corresponding thermal ions in the fast and slow (Maxwellian) solar wind (SWICS/ACE), while the 4He/O ratio exceeds the corresponding ratio in the solar wind by a factor of two. The intensities of the 3He, 4He, C, O, and Fe suprathermal ions in outflows from CHs grow with the speed of the solar wind. This indicates that, in periods ofminimumsolar activity, suprathermal ions from CHs represent a high-temperature “tail” of the solar wind. An additional flux of suprathermal helium ions may also be contributed by other external sources.



Erratum
Erratum to: “The Force Function of Two Rigid Celestial Bodies in Delaunay–Andoyer Variables”


