A Molecular Dynamics Based Comparison of the Mechanical Properties of Three Polytypes of Cubic BC3


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work molecular dynamics simulations are employed to compare the mechanical properties and hardness of three polytypes of cubic BC3. Firstly, two interatomic Tersoff potentials, with different parameterizations, were identified from the literature for the boron-carbon system. Based on cohesive energies and structural properties from existing ab-initio studies, the suitability of the two potentials for predicting the properties of BC3 was analyzed. Secondly, using the better interatomic potential, more detailed molecular dynamics simulations were conducted to estimate and compare the elastic, yield, post-yield behavior and hardness of the three polytypes. The elastic constants compare well with existing abinitio values and vary by at most by 15% amongst the three polytypes. Response to indentation showed considerable qualitative differences in yield and post-yield response. One of the polytypes showed lower yield strength and seemed more ductile than the other two. The hardness also showed a complex dependence on both the material and the indentation depths. A peculiar, indenter-size dependent pile-up behavior was also seen. Specifically, for lower radii, pile-up was seen on indentation. As the radius of the indenter was increased, pile-up was seen only on retracting the indenter. The higher volume occupied by the indentation-amorphized material was found to be the reason for pile-up on retracting the indenter.

作者简介

E. Kishor

Department of Mechanical Engineering

Email: n.swaminathan@iitm.ac.in
印度, Chennai, 600036

N. Swaminathan

Department of Mechanical Engineering

编辑信件的主要联系方式.
Email: n.swaminathan@iitm.ac.in
印度, Chennai, 600036

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019