A Supplement to Hölder’s Inequality. The Resonance Case. I


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Suppose that m ≥ 2, numbers p1, …, pm ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ... + \frac{1}{{{p_m}}} < 1\), and functions γ1\({L^{{p_1}}}\)(ℝ1), …, γm\({L^{{p_m}}}\)(ℝ1) are given. It is proved that if the set of “resonance points” of each of these functions is nonempty and the so-called “resonance condition” holds, then there are arbitrarily small (in norm) perturbations Δγk\({L^{{p_k}}}\)(ℝ1) under which the resonance set of each function γk + Δγk coincides with that of γk for 1 ≤ km, but \({\left\| {\int\limits_0^t {\prod\limits_{k = 0}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]d\tau } } } \right\|_{{L^\infty }\left( {{\mathbb{R}^1}} \right)}} = \infty \). The notion of a resonance point and the resonance condition for functions in the spaces Lp(ℝ1), p ∈ (1, +∞], were introduced by the author in his previous papers.

作者简介

B. Ivanov

St. Petersburg State University of Industrial Technologies and Design

编辑信件的主要联系方式.
Email: ivanov-bf@yandex.ru
俄罗斯联邦, St. Petersburg, 198095

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018