Stabilization of a Class of Uncertain Systems


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the problem to synthesize a stabilizing control u synthesis for systems \(\frac{{dx}}{{dt}} = Ax + Bu\) where A ∈ ℝn×n and B ∈ ℝn×m, while the elements αi,j(·) of the matrix A are uniformly bounded nonanticipatory functionals of arbitrary nature. If the system is continuous, then the elements of the matrix B are continuous and uniformly bounded functionals as well. If the system is pulse-modulated, then the elements of the matrix B are differentiable uniformly bounded functions of time. It is assumed that k isolated uniformly bounded elements \({\alpha _{{i_l},{j_l}}}\left( \cdot \right)\) satisfying the condition \(\mathop {\inf }\limits_{\left( \cdot \right)} \left| {{\alpha _{{i_l},{j_l}}}\left( \cdot \right)} \right|{\alpha _ - } > 0,\quad l \in \overline {1,k}\) are located above the main diagonal of the matrix A(·), where Gk is the set of all isolated elements of the system, J1 is the set of indices of rows of matrix A(·) containing isolated elements, and J2 is the set of indices of its rows free of isolated elements. It is assumed that other elements located above the main diagonal are sufficiently small provided that their row indices belong to J1, i.e., \(\mathop {\sup }\limits_{\left( \cdot \right)} \left| {{\alpha _{i,j}}\left( \cdot \right)} \right| < \delta ,\quad {\alpha _{i,j}} \notin {G_k},\quad i \in {J_1},\quad j > i\). All other elements located above the main diagonal are uniformly bounded. The relation u = S(·)x is satisfied in the continuous case, while the relation u = ξ(t) is satisfied in the pulse-modulated case; here the components of the vector ξ are outputs of synchronous pulse elements. Constructing a special quadratic Lyapunov function, one can determine a matrix S(·) such that the closed system becomes globally exponentially stable in the continuous case. In the pulse-modulated case, input pulses are synthesized such that the system becomes globally asymptotically stable.

Об авторах

M. Zakharenkov

St. Petersburg State University

Автор, ответственный за переписку.
Email: maxxzahar@rambler.ru
Россия, Universitetskaya nab. 7–9, St. Petersburg, 199034

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2018

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».