Asymptotic Normality in the Problem of Selfish Parking


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We continue in this paper to study one of the models of a discrete analog of the Renyi problem, also known as the parking problem. Suppose that n and i are integers satisfying n ≥ 0 and 0 ≤ in – 1. We place an open interval (i, i + 1) in the segment [0, n] with i being a random variable taking values 0, 1, 2, …, n – 1 with equal probability for all n ≥ 2. If n < 2, then we say that the interval does not fit. After placing the first interval, two free segments [0, i] and [i + 1, n] are formed and independently filled with intervals of unit length according to the same rule, and so on. At the end of the process of filling the segment [0, n] with intervals of unit length, the distance between any two adjacent unit intervals does not exceed one. Suppose now that Xn is the number of unit intervals placed. In our earlier work published in 2018, we studied the asymptotic behavior of the first moments of random variable Xn. In contrast to the classical case, the exact expressions for the expectation, variance, and third central moment were obtained. The asymptotic behavior of all central moments of random variable Xn is investigated in this paper and the asymptotic normality for Xn is proved.

About the authors

S. M. Ananjevskii

St. Petersburg State University

Author for correspondence.
Email: ananjevskii@mail.ru
Russian Federation, St. Petersburg, 199034

N. A. Kryukov

St. Petersburg State University

Author for correspondence.
Email: kryuknik@gmail.com
Russian Federation, St. Petersburg, 199034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.