Conditions for the Existence of Two Limit Cycles in a System with Hysteresis Nonlinearity


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work deals with a two-dimensional automatic control system containing a single nonlinear hysteretic element in the general form. The conditions sufficient for the existence of at least two limit cycles in the system are presented. To prove the existence of cycles, three closed contours embedded into each other are constructed on the phase manifold by “sewing” together pieces of the level lines of various Lyapunov functions. System trajectories cross the inner contour “from outside inwards” and the middle contour “from inside outwards.” The outer contour is crossed by system trajectories “from outside inwards.” The existence of these contours proves the presence of at least two limit cycles in the system. This paper is a continuation of our earlier published work “Conditions for the Global Stability of a Single System with Hysteresis Nonlinearity,” in which the conditions of global stability in this system are formulated.

About the authors

T. E. Zvyagintseva

Saint Petersburg State University

Author for correspondence.
Email: zv_tatiana@mail.ru
Russian Federation, St. Petersburg, 199034

V. A. Pliss

Saint Petersburg State University

Email: zv_tatiana@mail.ru
Russian Federation, St. Petersburg, 199034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Allerton Press, Inc.