Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 26, № 3 (2017)

Article

Analytical expressions for a finite-size 2D Ising model

Karandashev I., Kryzhanovsky B., Malsagov M.

Аннотация

Numerical methods are used to examine the thermodynamic characteristics of the twodimensional Ising model as a function of the number of spins N. Onsager’s solution is generalized to a finite-size lattice, and experimentally validated analytical expressions for the free energy and its derivatives are computed. The heat capacity at the critical point is shown to grow logarithmically with N. Due to the finite extent of the system the critical temperature can only be determined to some accuracy.

Optical Memory and Neural Networks. 2017;26(3):165-171
pages 165-171 views

Neuronal topology as set of braids: Information processing, transformation and dynamics

Lukyanova O., Nikitin O.

Аннотация

Spatial characteristics of brain matter affect dynamics of informational flow. It seems important to investigate into the topology of neural information to better understand biological neural nets as well as for their computer science analogs. Mathematical braids are proposed as tool for modeling the neuronal topology. Neurological basis of neuronal path is reviewed. We demonstrate mathematical algorithms for path description and transformation. A simulation environment for neural braid construction and transformation is implemented. Experimental evaluation of 1310719 braid-defined neural topologies illustrates how neural path intersections affect information processing and memory recall. The mathematical representation of synaptic pruning is proposed. Pruning of neural nets shows the applicability of the approach to the simplification of neural graphs for computational resource saving.

Optical Memory and Neural Networks. 2017;26(3):172-181
pages 172-181 views

Iterative method for distribution of capital in transparent economic system

Red’ko V., Sokhova Z.

Аннотация

In this paper, we propose an iterative method for distribution of capitals of investors between producers in a transparent economic system. This method allows each investor to take a decision with account of actions of other investors. Information about capitals of the community members is open. Investors and producers exchange information about their capitals, efficiency and intensions with the aid of light agent-messengers. It allows us to form a decentralized system of interactions in the economic community. We tested the model by means of computer simulations. The obtained results demonstrate efficiency of the proposed scheme of interactions.

Optical Memory and Neural Networks. 2017;26(3):182-191
pages 182-191 views

Modelling of navigation based LNA parameters using neural network technique

Payala A., Anand R.

Аннотация

An approach to model the parameters of LNA which is ideal for GLONASS navigation system. To design LNA, multilayer perceptron architecture is used. The parameters of LNA are calculated using Levenberg Marquardt Backpropagation Algorithm for the frequency range 300 MHz to 18 GHz. ANN model is trained using Agilent MGA 71543 Low Noise Amplifier datasheet and this model shows high regression. The smith and polar charts are plotted for frequency range 300 MHz to 18 GHz and parameters are calculated for center frequency of L1 band of GLONASS, which is 1.602 GHz.

Optical Memory and Neural Networks. 2017;26(3):192-198
pages 192-198 views

Calculation of vortex eigenfunctions of bounded double lens system

Kirilenko M.

Аннотация

This paper is devoted to theoretical analysis of optical signals passing through a double lens imaging system based on the double finite Hankel transform of vortex order m. The set of vortex eigenfunctions of such system was calculated, which permitted to analyze optical signal transmission distortion based on the approximation by this eigenfunctions.

Optical Memory and Neural Networks. 2017;26(3):199-206
pages 199-206 views

On some prerequisites of correlation singular optics as a branch of information optics

Polyanskii P., Felde C., Zelinskii Y., Konovhuk A.

Аннотация

Singular optics is the important and dynamically developed area of modern photonics merging with nono-physics, metamaterials, biomedical optics and having promising applications in metrology, interferometry, manipulation of minute quantities of a matter, as well as in information optics, including optical computing and telecommunications. Since the beginning of the Third Millenium, singular optics trends toward expansing on partially coherent, heterogeneously polarized and polychromatic light fields. We consider here some early forerunners of this trend showing that important prereqisities of correlation singular optics lie in the fundamentals of classical optics, such as the notions of diffraction, partial coherence and partial polarization, that put in evidence logicality and prospects of this field of research.

Optical Memory and Neural Networks. 2017;26(3):207-215
pages 207-215 views

The photocatalytic activity of the glass composites with the titan dioxide sol-gel films studies

Atkarskaya A., Nartzev V., Privalov V., Shemanin V.

Аннотация

The films were drawn on the glass substrates from film-forming sols, created on the basis of chlorides or nitrates. These composites photocatalytic activity dependences on the films thickness and the packaging density of the sol disperse particles in a film layer have been established experimentally.

Optical Memory and Neural Networks. 2017;26(3):216-220
pages 216-220 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».