Development of the algorithm of adaptive construction of hierarchical neural network classifiers


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper presents the development of the algorithm for adaptive construction of hierarchical neural network classifiers based on automatic modification of the desired response of a perceptron with a small number of neurons in a single hidden layer. Improved versions of the algorithm are tested on standard benchmark problems Vowels and MNIST. A discussion of the results, strengths and weaknesses of the algorithm, directions of further work on its testing and improvement, is provided.

Sobre autores

V. Svetlov

Skobeltsyn Institute of Nuclear Physics; Physical Department

Autor responsável pela correspondência
Email: svetlov.vsevolod@gmail.com
Rússia, Moscow; Moscow

S. Dolenko

Skobeltsyn Institute of Nuclear Physics

Email: svetlov.vsevolod@gmail.com
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2017