Deep learning: an overview and main paradigms


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the present paper, we examine and analyze main paradigms of learning of multilayer neural networks starting with a single layer perceptron and ending with deep neural networks, which are considered regarded as a breakthrough in the field of the intelligent data processing. The baselessness of some ideas about the capacity of multilayer neural networks is shown and transition to deep neural networks is justified. We discuss the principal learning models of deep neural networks based on the restricted Boltzmann machine (RBM), an autoassociative approach and a stochastic gradient method with a Rectified Linear Unit (ReLU) activation function of neural elements.

Авторлар туралы

V. Golovko

Brest State Technical University; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Хат алмасуға жауапты Автор.
Email: gva@bstu.by
Белоруссия, Brest; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017