Total Margin Based Balanced Relative Margin Machine
- 作者: Wu Y.1, Pei H.1, Zhong P.1
-
隶属关系:
- College of Science
- 期: 卷 28, 编号 1 (2018)
- 页面: 163-167
- 栏目: Applied Problems
- URL: https://journals.rcsi.science/1054-6618/article/view/195324
- DOI: https://doi.org/10.1134/S1054661818010194
- ID: 195324
如何引用文章
详细
Inspired by the total margin algorithm, we extend balanced relative margin machine (BRMM) by introducing surplus variables, and propose a total margin based balanced relative (TM-BRMM). TMBRMM not only solves the loss of information points involved, but also addresses outliers at the outer boundaries that limit the maximum distance from points to separating hyperplane. Furthermore, by means of kernel function, it is easy to solve nonlinear separable datasets. The experiments on UCI datasets verify the feasibility and superiority of TM-BRMM.
作者简介
Yankun Wu
College of Science
Email: zping@cau.edu.cn
中国, Beijing, 100083
Huimin Pei
College of Science
Email: zping@cau.edu.cn
中国, Beijing, 100083
Ping Zhong
College of Science
编辑信件的主要联系方式.
Email: zping@cau.edu.cn
中国, Beijing, 100083
补充文件
