Traffic Sign Classification with a Convolutional Network


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

I approach the traffic signs classification problem with a convolutional neural network implemented in TensorFlow reaching 99.33% accuracy. The highlights of this solution would be data pre-processing, data augmentation pipeline, pre-training and skipping connections in the network. I am using Python as programming language and TensorFlow as a fairly low-level machine learning framework.

作者简介

A. Staravoitau

Belarusian State University

编辑信件的主要联系方式.
Email: alex.staravoitau@gmail.com
白俄罗斯, Minsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018