Optimisation of multiclass supervised classification based on using output codes with error-correcting


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An approach of solving the problem of multiclass supervised classification, based on using errorcorrecting codes is considered. The main problem here is the creation of binary code matrix, which provides high classification accuracy. Binary classifiers must be distinct and accurate. In this issue, there are many questions. What should be the elements of the matrix, how many elements provide the best accuracy and how to find them? In this paper an approach to solve some optimization problems for the construction of the binary code matrix is considered. The problem of finding the best binary classifiers (columns of matrix) is formulated as a discrete optimization problem. For some partial precedent classification approach, there is a calculation of the effective values of optimising function. Prospects of this approach are confirmed by a series of experiments on various practical tasks.

作者简介

V. Ryazanov

Department of Computer Science

编辑信件的主要联系方式.
Email: vasyarv@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016