Approximation of experimental data by solving linear difference equations with constant coefficients (in particular, by exponentials and exponential cosines)
- Авторы: Smirnov V.Y.1, Kuznetsova A.V.2
-
Учреждения:
- “Azforus” LTD
- Emanuel Institute of Biochemical Physics
- Выпуск: Том 27, № 2 (2017)
- Страницы: 175-183
- Раздел: Mathematical Method in Pattern Recognition
- URL: https://journals.rcsi.science/1054-6618/article/view/195040
- DOI: https://doi.org/10.1134/S1054661817020109
- ID: 195040
Цитировать
Аннотация
This paper proposes a method for approximating experimental data points by the curves representing the solutions of linear difference equations with constant coefficients, in particular, by the curves of the expcos class. An algorithm for finding the coefficients and initial conditions of this approximation is described. The proposed approach minimizes the root mean square (RMS) deviation. The method is tested on some model examples, including the refinement of the beginning of QRS complexes on a three-dimensional ECG loop (in the form of Frank leads).
Ключевые слова
Об авторах
V. Smirnov
“Azforus” LTD
Автор, ответственный за переписку.
Email: azfor@yandex.ru
Россия, Moscow, 107140
A. Kuznetsova
Emanuel Institute of Biochemical Physics
Email: azfor@yandex.ru
Россия, Moscow, 119334
Дополнительные файлы
