Semi-supervised classification using multiple clusterings
- Авторы: Yu G.X.1, Feng L.1, Yao G.J.1, Wang J.1
-
Учреждения:
- College of Computer and Information Science
- Выпуск: Том 26, № 4 (2016)
- Страницы: 681-687
- Раздел: Mathematical Method in Pattern Recognition
- URL: https://journals.rcsi.science/1054-6618/article/view/194907
- DOI: https://doi.org/10.1134/S1054661816040210
- ID: 194907
Цитировать
Аннотация
Graph determines the performance of graph-based semi-supervised classification. In this paper, we investigate how to construct a graph from multiple clusterings and propose a method called Semi-Supervised Classification using Multiple Clusterings (SSCMC in short). SSCMC firstly projects original samples into different random subspaces and performs clustering on the projected samples. Then, it constructs a graph by setting an edge between two samples if these two samples are clustered in the same cluster for each clustering. Next, it combines these graphs into a composite graph and incorporates the resulting composite graph with a graph-based semi-supervised classifier based on local and global consistency. Our experimental results on two publicly available facial images show that SSCMC not only achieves higher accuracy than other related methods, but also is robust to input parameters.
Ключевые слова
Об авторах
G. Yu
College of Computer and Information Science
Email: kingjun@swu.edu.cn
Китай, Chongqing, 400715
L. Feng
College of Computer and Information Science
Email: kingjun@swu.edu.cn
Китай, Chongqing, 400715
G. Yao
College of Computer and Information Science
Email: kingjun@swu.edu.cn
Китай, Chongqing, 400715
J. Wang
College of Computer and Information Science
Автор, ответственный за переписку.
Email: kingjun@swu.edu.cn
Китай, Chongqing, 400715
Дополнительные файлы
