A stochastic approach for association rule extraction
- Авторы: Oliinyk A.A.1, Subbotin S.A.1
-
Учреждения:
- Zaporizhzhya National Technical University
- Выпуск: Том 26, № 2 (2016)
- Страницы: 419-426
- Раздел: Applied Problems
- URL: https://journals.rcsi.science/1054-6618/article/view/194754
- DOI: https://doi.org/10.1134/S1054661816020139
- ID: 194754
Цитировать
Аннотация
This paper addresses the problem of association rule extraction. To extract quantitative association rules from given sets of observations, a stochastic method is proposed. The developed method improves the reliability and interpretability of recognition models based on association rules, employs the stochastic approach to search through various combinations of sets of elements in association rules, and uses a priori information about the informativity of intervals of feature values. A system of criteria for estimating association rules is developed that can be used to automate the analysis of properties and to compare various models based on association rules when solving pattern recognition problems.
Ключевые слова
Об авторах
A. Oliinyk
Zaporizhzhya National Technical University
Email: subbotin@zntu.edu.ua
Украина, ul. Zhukovskogo 64, Zaporozhye, 69063
S. Subbotin
Zaporizhzhya National Technical University
Автор, ответственный за переписку.
Email: subbotin@zntu.edu.ua
Украина, ul. Zhukovskogo 64, Zaporozhye, 69063
Дополнительные файлы
