On Metric Correction and Conditionality of Raw Featureless Data in Machine Learning


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Recently, raw experimental data in machine learning often appear as direct comparisons between objects (featureless data). Different ways to evaluate difference or similarity of a pair of objects in image and data mining, image analysis, bioinformatics, etc., are usually used in practice. Nevertheless, such comparisons often are not distances or correlations (scalar products) like a correct function defined on a limited set of elements in machine learning. This problem is denoted as metric violations in ill-posed matrices. Therefore, it needs to recover violated metrics and provide optimal conditionality of corresponding matrices of pairwise comparisons for distances and similarities. This is the correct basis for using of modern machine learning algorithms.

Sobre autores

S. Dvoenko

Tula State University

Autor responsável pela correspondência
Email: dsd@tsu.tula.ru
Rússia, Tula

D. Pshenichny

Tula State University

Email: dsd@tsu.tula.ru
Rússia, Tula

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018