Gait recognition based on curvelet transform and PCANet


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Conventional gait recognition schemes has poor recognition accuracies in presence of covariates. It is mainly due to ineffective and inefficient representation and discriminative feature extraction schemes. The paper presents new technique to extract discriminative features from masked gait energy image based on curvelet transform and PCANet. The binary gait silhouette video sequence obtained from pre-processing of video sequence is converted in to masked gait energy image and then direction and edge representation ability of fast discrete curvelet transform is employed. Nonlinear and non invertible, image space to feature space mapping scheme of PCANet is used to extract discriminative robust features. The suitability and effectiveness of newly proposed scheme is demonstrated by experimentation on standard publicly available benchmark USF HumanID database.

Негізгі сөздер

Авторлар туралы

R. Chhatrala

Research Scholar, Rajarshi Sahu College of Engineering

Хат алмасуға жауапты Автор.
Email: therisil@gmail.com
Үндістан, Pune

D. Jadhav

Principal, Government Polytechnic

Email: therisil@gmail.com
Үндістан, Ambad, Maharastra

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017