Detection of Wildfires along Transmission Lines Using Deep Time and Space Features


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Traditional wildfire detection methods are of low efficiency and cannot meet user needs, a novel method based on deep time and space features along transmission line is proposed in this paper, which uses ViBe algorithm to detect movements in videos, and extracts static deep feature in the space domain and dynamic optical flow feature in the time domain respectively. At last the deep convolutional neural network model in cascade is used to classify and find out real wildfire regions. By using combined deep features extracted from dynamic time-domain and static space-domain respectively, our method can eliminate the interference of movements of other objects with similar colors.

作者简介

Jie Yuan

Jiangsu Electric Power Information Technology Co., Ltd.

编辑信件的主要联系方式.
Email: java_mc@163.com
中国, Nanjing, 210000

Lidong Wang

Qianjiang College

Email: java_mc@163.com
中国, Hangzhou, Zhejiang, 310036

Peng Wu

Jiangsu Electric Power Information Technology Co., Ltd.

Email: java_mc@163.com
中国, Nanjing, 210000

Chao Gao

State Grid Jiangsu Electric Power Company

Email: java_mc@163.com
中国, Nanjing, 210024

Lingqing Sun

Jiangsu Electric Power Information Technology Co., Ltd.

Email: java_mc@163.com
中国, Nanjing, 210000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018