Radial Meixner Moment Invariants for 2D and 3D Image Recognition


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper, we propose a new set of 2D and 3D rotation invariants based on orthogonal radial Meixner moments. We also present a theoretical mathematics to derive them. Hence, this paper introduces in the first case a new 2D radial Meixner moments based on polar representation of an object by a one-dimensional orthogonal discrete Meixner polynomials and a circular function. In the second case, we present a new 3D radial Meixner moments using a spherical representation of volumetric image by a one-dimensional orthogonal discrete Meixner polynomials and a spherical function. Further 2D and 3D rotational invariants are derived from the proposed 2D and 3D radial Meixner moments respectively. In order to prove the proposed approach, three issues are resolved mainly image reconstruction, rotational invariance and pattern recognition. The result of experiments prove that the Meixner moments have done better than the Krawtchouk moments with and without nose. Simultaneously, the reconstructed volumetric image converges quickly to the original image using 2D and 3D radial Meixner moments and the test images are clearly recognized from a set of images that are available in a PSB database.

Авторлар туралы

M. El Mallahi

Sidi Mohamed Ben Abdellah University

Хат алмасуға жауапты Автор.
Email: mostafa.elmallahi@usmba.ac.ma
Марокко, Fez

A. Zouhri

Sidi Mohamed Ben Abdellah University

Email: mostafa.elmallahi@usmba.ac.ma
Марокко, Fez

H. Qjidaa

Sidi Mohamed Ben Abdellah University

Email: mostafa.elmallahi@usmba.ac.ma
Марокко, Fez

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018