Efficient multi-temporal hyperspectral signatures classification using a Gaussian-Bernoulli RBM based approach


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper presents an efficient Gaussian-Bernoulli Restricted Boltzmann Machines (GB-RBM) framework in order to better address the classification challenge of remotely sensed images. The proposed approach relies on generating well-designed features for a new 3D modality of spectral signature. For this purpose, mesh smoothing is introduced to reduce noise while conserving the main geometric features of the multi-temporal spectral signature. Then, we propose the use of an RBM (Restricted Boltzmann Machine) framework as stand-alone non-linear classifier. The adapted framework focuses on a cooperative integrated generative-discriminative objective allowing the integration of modeling input features and their classification process in one-pass algorithm. The main benefit of the proposed approach is the ability to learn more discriminative features. We evaluated our approach within different scenarios and we demonstrated its usefulness for noisy high dimensional hyperspectral images.

Негізгі сөздер

Авторлар туралы

S. Hemissi

Laboratoire RIADI, ENSI

Хат алмасуға жауапты Автор.
Email: selim.hemissi@ensi.rnu.tn
Франция, Brest

Imed Farah

Laboratoire RIADI, ENSI

Email: selim.hemissi@ensi.rnu.tn
Франция, Brest

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016