Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network
- 作者: Sevastopolsky A.1
-
隶属关系:
- Department of Mathematical Methods of Forecasting, Faculty of Computational Mathematics and Cybernetics
- 期: 卷 27, 编号 3 (2017)
- 页面: 618-624
- 栏目: Applied Problems
- URL: https://journals.rcsi.science/1054-6618/article/view/195191
- DOI: https://doi.org/10.1134/S1054661817030269
- ID: 195191
如何引用文章
详细
Glaucoma is the second leading cause of blindness all over the world, with approximately 60 million cases reported worldwide in 2010. If undiagnosed in time, glaucoma causes irreversible damage to the optic nerve leading to blindness. The optic nerve head examination, which involves measurement of cup-todisc ratio, is considered one of the most valuable methods of structural diagnosis of the disease. Estimation of cup-to-disc ratio requires segmentation of optic disc and optic cup on eye fundus images and can be performed by modern computer vision algorithms. This work presents universal approach for automatic optic disc and cup segmentation, which is based on deep learning, namely, modification of U-Net convolutional neural network. Our experiments include comparison with the best known methods on publicly available databases DRIONS-DB, RIM-ONE v.3, DRISHTI-GS. For both optic disc and cup segmentation, our method achieves quality comparable to current state-of-the-art methods, outperforming them in terms of the prediction time.
作者简介
A. Sevastopolsky
Department of Mathematical Methods of Forecasting, Faculty of Computational Mathematics and Cybernetics
编辑信件的主要联系方式.
Email: artem.sevastopolsky@gmail.com
俄罗斯联邦, Moscow
补充文件
