Pesquisa

Edição
Título
Autores
Using the K-Nearest Neighbors Algorithm for Automated Detection of Myocardial Infarction by Electrocardiogram Data Entries
Savostin A., Ritter D., Savostina G.
Dimensionality Reduction of Hyperspectral Images Using Pooling
Paul A., Chaki N.
Traffic Sign Classification with a Convolutional Network
Staravoitau A.
A method for recognizing changes in stomach mucosal microstructure by video endoscopy
Kadushnikov R., Mizgulin V., Kulagina O., Fedorov E., Starodubov D., Studenok S., Erendzhenova K., Kamenin I., Davi Y.
Methods for discrete analysis of medical data on the basis of recognition theory and some of their applications
Zhuravlev Y., Nazarenko G., Vinogradov A., Dokukin A., Katerinochkina N., Kleimenova E., Konstantinova M., Ryazanov V., Sen’ko O., Cherkashov A.
Optimisation of multiclass supervised classification based on using output codes with error-correcting
Ryazanov V.
An Efficient Human Activity Recognition Technique Based on Deep Learning
Khelalef A., Ababsa F., Benoudjit N.
An Intelligent Information Technology for Symbol-Extraction from Weakly Formalized Graphic Documents
Vasin Y., Vasin D.
A Coarse-to-Fine Strategy for Vehicle Logo Recognition from Frontal-View Car Images
Sotheeswaran S., Ramanan A.
Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values
Torshin I., Rudakov K.
Signal classification and software–hardware implementation of digital filter banks based on field-programmable gate arrays and compute unified device architecture
Kaplun D., Klionskiy D., Gulvanskiy V., Voznesenskiy A., Golubkov A., Geppener V., Kupriyanov M.
Solving problems of clustering and classification of cancer diseases based on DNA methylation data
Polovinkin A., Krylov I., Druzhkov P., Ivanchenko M., Meyerov I., Zaikin A., Zolotykh N.
Surface Classification of Damaged Concrete Using Deep Convolutional Neural Network
Hung P., Su N., Diep V.
An Adaptive Entropy Based Scale Invariant Face Recognition Face Altered by Plastic Surgery
Sable A., Talbar S.
Empirical Mode Decomposition for Signal Preprocessing and Classification of Intrinsic Mode Functions
Klionskiy D., Kaplun D., Geppener V.
Description of the process of presentation and recognition of forest vegetation objects on multispectral space images
Nazmutdinova A., Itskov A., Milich V.
On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties
Torshin I., Rudakov K.
A survey of deep learning methods and software tools for image classification and object detection
Druzhkov P., Kustikova V.
An Automatic Detection of Blood Vessel in Retinal Images Using Convolution Neural Network for Diabetic Retinopathy Detection
Raja C., Balaji L.
On Some Transformations of Features in Machine Learning in Medicine
Zhuravlev Y., Ryazanov V., Sen’ko O., Dokukin A., Afanas’ev P.
Normal and Abnormal Tissue Classification in Positron Emission Tomography Oncological Studies
Comelli A., Stefano A., Benfante V., Russo G.
Degradation adaptive texture classification for real-world application scenarios
Gadermayr M., Merhof D., Vécsei A., Uhl A.
A practical aspect of identification and classifying of Guns based on gunshot wound patterns using gene expression programming
Savakar D., Kannur A.
Classification of welding defects in radiographic images
Moghaddam A., Rangarajan L.
Image Classification Model Using Visual Bag of Semantic Words
Qi Y., Zhang G., Li Y.
1 - 25 de 44 resultados 1 2 > >> 
Dicas:
  • Palavras-chave são sensíveis a maiúsculas
  • Preposições e conjunções ingleses são ignoradas
  • Busca é feita por todos os palavras-chave (agente AND experimentador) por omissão
  • Use OR para pesquisar um termo exato, ex.: educação OR formação
  • Use parênteses para criar frases complexas, ex.: arquivo de ((revistas OR conferências) NOT teses)
  • Para pesquisar uma frase precisa use aspas duplas, ex.: "investigações científicas"
  • Exclua uma palavra utilizando o sinal - (hífen) ou operador NOT; ex.: concurso-de beleza ou concurso NOT de beleza
  • Use * como caractere-coringa, ex.: científic* recuperará as palavras "científico", "científicos", etc.