A Model Describing the Propagation of a Femtosecond Pulse in a Kerr Nonlinear Medium


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a model of nonlinear interaction of femtosecond pulses with a Kerr nonlinear medium, allowing for first and second order dispersion, nonlinear response dispersion, and mixed time and space derivatives. The invariants are constructed by a transformation of the generalized nonlinear Schrodinger equation that involves changing to new functions and reduces the original equation to a form without the nonlinear response derivatives and the mixed derivatives. Appropriate conservation laws are established for the transformed equation. The invariants derived in this article lead to conservative difference schemes and allow control of computer simulation results.

Sobre autores

S. Stepanenko

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: s.stepanenko@cs.msu.ru
Rússia, Moscow

A. Razgulin

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Email: s.stepanenko@cs.msu.ru
Rússia, Moscow

V. Trofimov

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Email: s.stepanenko@cs.msu.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019