Discrete Spline Solution of Singularly Perturbed Problem with Two Small Parameters on a Shishkin-Type Mesh
- Авторы: Zahra W.K.1, Van Daele M.2
-
Учреждения:
- Faculty of Engineering, Tanta University
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University
- Выпуск: Том 29, № 3 (2018)
- Страницы: 367-381
- Раздел: Article
- URL: https://journals.rcsi.science/1046-283X/article/view/247774
- DOI: https://doi.org/10.1007/s10598-018-9416-3
- ID: 247774
Цитировать
Аннотация
We consider singularly perturbed problems of convection-diffusion-reaction type which involve two small parameters. A new discrete cubic spline method is developed for the solution of this problem on a Shishkin mesh. A convergence analysis is given and the method is shown to be almost second-order uniformly convergent with respect to the perturbation parameters ????d and ????c. Numerical results are presented to validate the theoretical results as well as the robustness of the method.
Об авторах
W. Zahra
Faculty of Engineering, Tanta University
Автор, ответственный за переписку.
Email: wzahra@f-eng.tanta.edu.eg
Египет, Tanta
M. Van Daele
Department of Applied Mathematics, Computer Science and Statistics, Ghent University
Email: wzahra@f-eng.tanta.edu.eg
Бельгия, Krijgslaan
Дополнительные файлы
