Numerical Method for the Inverse Boundary-Value Problem of the Heat Equation
- Авторлар: Dmitriev V.I.1, Stolyarov L.V.1
-
Мекемелер:
- Faculty of Computational Mathematics and Cybernetics, Moscow State University
- Шығарылым: Том 28, № 2 (2017)
- Беттер: 141-147
- Бөлім: I. Inverse Problems
- URL: https://journals.rcsi.science/1046-283X/article/view/247585
- DOI: https://doi.org/10.1007/s10598-017-9352-7
- ID: 247585
Дәйексөз келтіру
Аннотация
The article considers the inverse boundary-value problem of heat conduction which involves determining the time distribution of temperature on the boundary given the spatial distribution of the temperature at the final time instant. The problem is reduced to an integral equation of the first kind with a symmetrical kernel. The integral equation is solved by a special iterative method. Test examples demonstrate convergence and stability of the proposed method.
Авторлар туралы
V. Dmitriev
Faculty of Computational Mathematics and Cybernetics, Moscow State University
Хат алмасуға жауапты Автор.
Email: dmitriev@cs.msu.ru
Ресей, Moscow
L. Stolyarov
Faculty of Computational Mathematics and Cybernetics, Moscow State University
Email: dmitriev@cs.msu.ru
Ресей, Moscow
Қосымша файлдар
