RNA-SEQ IN THE STUDY OF VIRUS-ASSOCIATED TUMORS: CERVICAL CANCER (REVIEW)


如何引用文章

全文:

详细

For the last few years Next Generation Sequencing technique and its applications has took the leading position in the arsenal of analytical methods that are used for studying the mechanisms of neoplastic progression. Among various experimental opportunities Next Generation Sequencing provides, RNA-sequencing (RNA-Seq) is of great importance as it makes possible unraveling the highest levels of genome expression regulation, which define the molecular phenotype of cells in composition of a tumor. Considerable amount of current studies carried out with the use of RNA-Seq method are designed as pan-cancer integrated research, in which special attention is payed to virus-associated tumors, including papillomavirus-dependent cervical cancer. This review paper summarizes the results of RNA-Seq studies published world-wide within 2017-2019 years and carried out using clinical samples from cervical cancer patients. New facts concerning such hot topics as genomic and transcriptomic instability, neoantigen load, cellular and molecular heterogeneity, tumor epigenetics, antitumor and antiviral immune response, chronic inflammation, immune exhaustion, phenotypic plasticity and tumor cell resistance, are considered. The whole spectrum of issues that are actively discussed in published literature is systematized according to three levels of organization: «molecular», «cellular» and «organismal». The findings reviewed in the paper convincingly illustrate that wide usage of RNA-Seq technology for profiling primary tumors does facilitate moving to a new level of our understanding of the mechanisms of carcinogenesis and emergence of new directions in cancer treatment, namely targeted and immune-therapy.

作者简介

O. Kurmyshkina

Petrozavodsk State University (PetrSU)

185910, Petrozavodsk, Russia

A. Bogdanova

Petrozavodsk State University (PetrSU)

185910, Petrozavodsk, Russia

A. Spasova

Petrozavodsk State University (PetrSU)

185910, Petrozavodsk, Russia

P. Kovchur

Petrozavodsk State University (PetrSU)

185910, Petrozavodsk, Russia

Tatyana Volkova

Petrozavodsk State University (PetrSU)

Email: VolkovaTO@yandex.ru
MD, PhD, Dr. Sci. Biol., Professor, Director of the Institute of High Biomedical Technologies of PetrSU, 185910, Petrozavodsk, Russia 185910, Petrozavodsk, Russia

参考

  1. Cubuk C., Hidalgo MR., Amadoz A., Pujana M.A., Mateo F., Herranz C. et al. Gene Expression Integration into Pathway Modules Reveals a Pan-Cancer Metabolic Landscape. Cancer Res. 2018; 78 (21): 6059-72.
  2. Thorsson V., Gibbs D.L., Brown S.D., Wolf D., Bortone D.S., Ou Yang T.H. et al. The Immune Landscape of Cancer. Immunity. 2018; 48 (4): 812-30.
  3. Campbell J.D., Yau C., Bowlby R., Liu Y., Brennan K., Fan H. et al. Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Rep. 2018; 23(1): 194-12.
  4. Berger A.C., Korkut A., Kanchi R.S., Hegde A.M., Lenoir W., Liu W. et al. A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell. 2018; 33(4): 690-705.
  5. Cantalupo P.G., Katz J.P., Pipas J.M. Viral sequences in human cancer. Virology. 2018; 513: 208-16.
  6. Lau D., Bobe A.M., Khan A.A. RNA Sequencing of the Tumor Microenvironment in Precision Cancer Immunotherapy. Trends Cancer. 2019; 5 (3): 149-56.
  7. Finotello F., Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol. Immunother. 2018; 67 (7): 1031-40.
  8. Hao Y., Yan M., Heath B.R., Lei Y.L., Xie Y. Fast and robust deconvolution of tumor infiltrating lymphocyte from expression profiles using least trimmed squares. PLoS Comput. Biol. 2019; 15 (5): e1006976.
  9. Nirmal A.J., Regan T., Shih B.B., Hume D.A., Sims A.H., Freeman T.C. Immune Cell Gene Signatures for Profiling the Microenvironment of Solid Tumors. Cancer Immunol. Res. 2018; 6 (11): 1388-400.
  10. Lawson J.S., Salmons B., Glenn W.K. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV). Front. Oncol. 2018; 8: 1.
  11. Wu Y., Zhao J., Dong S., Wang Y., Li A., Jiang Y. et al. Whole-exome and RNA sequencing reveal novel insights into the pathogenesis of HPV associated cervical cancer. Cancer Biomark. 2019; 25 (4): 341-50.
  12. Cui T., Enroth S., Ameur A., Gustavsson I., Lindquist D., Gyllensten U. Invasive cervical tumors with high and low HPV titer represent molecular subgroups with different disease etiology. Carcinogenesis. 2019; 40 (2): 269-78.
  13. Bhuvaneshwar K., Song L., Madhavan S., Gusev Y. viGEN: An Open Source Pipeline for the Detection and Quantification of Viral RNA in Human Tumors. Front. Microbiol. 2018; 9: 1172.
  14. Chen Y.P., Wang Y.Q., Lv J.W., Li Y.Q., Chua M.L.K., Le Q.T. et al. Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: implications for immunotherapy. Ann. Oncol. 2019; 30 (1): 68-75.
  15. Banister C.E., Liu C., Pirisi L., Creek K.E., Buckhaults P.J. Identification and characterization of HPV-independent cervical cancers. Oncotarget. 2017; 8(8): 13375-86.
  16. Tamura R., Yoshihara K., Saito T., Ishimura R., Martínez-Ledesma J.E., Xin H. et al. Novel therapeutic strategy for cervical cancer harboring FGFR3-TACC3 fusions. Oncogenesis. 2018; 7 (1): 4.
  17. Qin Y., Ekmekcioglu S., Forget M.A., Szekvolgyi L., Hwu P., Grimm E.A. et al. Cervical Cancer Neoantigen Landscape and Immune Activity is Associated with Human Papillomavirus Master Regulators. Front. Immunol. 2017; 8: 689.
  18. Wu P., Yang S., Singh S., Qin F., Kumar S., Wang L. et al. The Landscape and Implications of Chimeric RNAs in Cervical Cancer. EBioMedicine. 2018; 37: 158-67.
  19. Kahles A., Lehmann K.V., Toussaint N.C., Hüser M., Stark S.G., Sachsenberg T. et al. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell. 2018; 34 (2): 211-24.
  20. Gong J., Jiang H., Shu C., Hu M.Q., Huang Y., Liu Q. et al. Integrated analysis of circular RNA-associated ceRNA network in cervical cancer: Observational Study. Medicine (Baltimore). 2019; 98 (34): e16922.
  21. Luo W., Wang M., Liu J., Cui X., Wang H. Identification of a six lncRNAs signature as novel diagnostic biomarkers for cervical cancer. J. Cell Physiol. 2019. doi: 10.1002/jcp.29015.
  22. Wu W.J., Shen Y., Sui J., Li C.Y., Yang S., Xu S.Y. et al. Integrated analysis of long non-coding RNA competing interactions revealed potential biomarkers in cervical cancer: Based on a public database. Mol. Med. Rep. 2018; 17 (6): 7845-58.
  23. Chen B.J., Byrne F.L., Takenaka K., Modesitt S.C., Olzomer E.M., Mills J.D. et al. Transcriptome landscape of long intergenic non-coding RNAs in endometrial cancer. Gynecol. Oncol. 2017; 147(3): 654-62.
  24. Chen H., Li C., Peng X., Zhou Z., Weinstein J.N.; Cancer Genome Atlas Research Network, Liang H. A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell. 2018; 173 (2): 386-99.
  25. Snoek B.C., Verlaat W., Babion I., Novianti P.W., van de Wiel M.A., Wilting S.M1. et al. Genome-wide microRNA analysis of HPV-positive self-samples yields novel triage markers for early detection of cervical cancer. Int. J. Cancer. 2019; 144 (2): 372-79.
  26. Shi C., Yang Y., Zhang L., Zhang T., Yu J., Qin S., Gao Y. Optimal subset of signature miRNAs consisting of 7 miRNAs that can serve as a novel diagnostic and prognostic predictor for the progression of cervical cancer. Oncol. Rep. 2019; 41 (6): 3167-78.
  27. Weng S.L., Huang K.Y., Weng J.T., Hung F.Y., Chang T.H., Lee T.Y. Genome-wide discovery of viral microRNAs based on phylogenetic analysis and structural evolution of various human papillomavirus subtypes. Brief Bioinform. 2018; 19(6): 1102-14.
  28. Cui J.H., Lin K.R., Yuan S.H., Jin Y.B., Chen X.P., Su X.K. et al. TCR Repertoire as a Novel Indicator for Immune Monitoring and Prognosis Assessment of Patients With Cervical Cancer. Front. Immunol. 2018; 9: 2729.
  29. Hu X., Zhang J., Wang J., Fu J., Li T., Zheng X., et al. Landscape of B cell immunity and related immune evasion in human cancers. Nat. Genet. 2019; 51 (3): 560-67.
  30. Valdes-Mora F., Handler K., Law A.M.K., Salomon R., Oakes S.R., Ormandy C.J., Gallego-Ortega D. Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology. Front. Immunol. 2018; 9: 2582.
  31. Punt S., Corver W.E., van der Zeeuw S.A., Kielbasa S.M., Osse E.M., Buermans H.P. et al. Whole-transcriptome analysis of flow-sorted cervical cancer samples reveals that B cell expressed TCL1A is correlated with improved survival. Oncotarget. 2015; 6 (36): 38681-94.
  32. Cao S., Wylie K.M., Wyczalkowski M.A., Karpova A., Ley J., Sun S. et al. Dynamic host immune response in virus-associated cancers. Commun. Biol. 2019; 2: 109.
  33. Wang J., Li Z., Gao A., Wen Q., Sun Y. The prognostic landscape of tumor-infiltrating immune cells in cervical cancer. Biomed. Pharmacother. 2019; 120: 109444.
  34. Roufas C., Chasiotis D., Makris A., Efstathiades C., Dimopoulos C., Zaravinos A. The Expression and Prognostic Impact of Immune Cytolytic Activity-Related Markers in Human Malignancies: A Comprehensive Meta-analysis. Front. Oncol. 2018; 8: 27.
  35. Rooney M.S., Shukla S.A., Wu C.J., Getz G., Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015; 160 (1-2): 48-61.
  36. Royse K.E., Zhi D., Conner M.G., Clodfelder-Miller B., Srinivasasainagendra V., Vaughan L.K. et al. Differential Gene Expression Landscape of Co-Existing Cervical Pre-Cancer Lesions Using RNA-seq. Front. Oncol. 2014; 4: 339.
  37. Tian R., Li X., Gao Y., Li Y., Yang P., Wang K. Identification and validation of the role of matrix metalloproteinase-1 in cervical cancer. Int. J. Oncol. 2018; 52 (4): 1198-208.
  38. Zhang Y., Li X., Zhou D., Zhi H., Wang P., Gao Y. et al. Inferences of individual drug responses across diverse cancer types using a novel competing endogenous RNA network. Mol. Oncol. 2018; 12 (9): 1429-46.
  39. Xie F., Dong D., Du N., Guo L., Ni W., Yuan H. et al. An 8-gene signature predicts the prognosis of cervical cancer following radiotherapy. Mol. Med. Rep. 2019; 20 (4): 2990-3002.
  40. Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017; 543 (7645): 378-84.
  41. Lu X., Jiang L., Zhang L., Zhu Y., Hu W., Wang J. et al. Immune Signature-Based Subtypes of Cervical Squamous Cell Carcinoma Tightly Associated with Human Papillomavirus Type 16 Expression, Molecular Features, and Clinical Outcome. Neoplasia. 2019; 21 (6): 591-601.
  42. Liu H., Liu L., Zhu H. The Role of Significantly Deregulated MicroRNAs in Recurrent Cervical Cancer Based on Bioinformatic Analysis of the Cancer Genome Atlas Data. J. Comput. Biol. 2019; 26 (4): 387-95.
  43. Mao Y., Fu Z., Dong L., Zheng Y., Dong J., Li X. Identification of a 26-lncRNAs Risk Model for Predicting Overall Survival of Cervical Squamous Cell Carcinoma Based on Integrated Bioinformatics Analysis. DNA Cell Biol. 2019; 38 (4): 322-32.
  44. Xiong J., Guo S., Bing Z., Su Y., Guo L. A Comprehensive RNA Expression Signature for Cervical Squamous Cell Carcinoma Prognosis. Front. Genet. 2019; 9: 696.
  45. Xia L., Wang H., Cai S., Su X., Shen J., Meng Q. et al. Integrated Analysis of a Competing Endogenous RNA Network Revealing a Prognostic Signature for Cervical Cancer. Front. Oncol. 2018; 8: 368.
  46. Qin S., Gao Y., Yang Y., Zhang L., Zhang T., Yu J., Shi C. Identifying Molecular Markers of Cervical Cancer Based on Competing Endogenous RNA Network Analysis. Gynecol. Obstet. Invest. 2019; 84(4): 350-9.
  47. Eoh K.J., Kim H.J., Lee J.Y., Nam E.J., Kim S., Kim S.W., Kim Y.T. Upregulation of homeobox gene is correlated with poor survival outcomes in cervical cancer. Oncotarget. 2017; 8 (48): 84396-402.
  48. Li X., Tian R., Gao H., Yang Y., Williams B.R.G., Gantier M.P. et al. Identification of a histone family gene signature for predicting the prognosis of cervical cancer patients. Sci. Rep. 2017; 7 (1): 16495.
  49. Li X., Tian R., Gao H., Yan F., Ying L., Yang Y. et al. Identification of Significant Gene Signatures and Prognostic Biomarkers for Patients With Cervical Cancer by Integrated Bioinformatic Methods. Technol. Cancer Res Treat. 2018; 17: 1533033818767455.
  50. Wang Q., Zhang L., Yan Z., Xie L., An Y., Li H. et al. OScc: an online survival analysis web server to evaluate the prognostic value of biomarkers in cervical cancer. Future Oncol. 2019; doi: 10.2217/fon-2019-0412.
  51. Nie Y.H., Liu X.D., Huang R., Xie D.F., Yin W.J., Guan H. et al. Analysis of mRNA Expression Patterns in Peripheral Blood Cells of 3 Patients With Cancer After the First Fraction of 2 Gy Irradiation: An Integrated Case Report and Systematic Review. Dose Response. 2019; 17 (1): 1559325819833474.

版权所有 © Eco-Vector, 2019


 


##common.cookie##