Immunological memory to SARS-CoV-2 S protein persists 4 years after the disease
- 作者: Afridonova Z.E.1, Toptygina A.P.1,2, Semikina E.L.3,4
-
隶属关系:
- G. Gabrichevsky Research Institute for Epidemiology and Microbiology
- Lomonosov Moscow State University
- National Medical Research Center of Children’s Health
- I. Sechenov First Moscow State Medical University (Sechenov University)
- 期: 卷 28, 编号 4 (2025)
- 页面: 1033-1038
- 栏目: SHORT COMMUNICATIONS
- URL: https://journals.rcsi.science/1028-7221/article/view/333264
- DOI: https://doi.org/10.46235/1028-7221-17227-IMT
- ID: 333264
如何引用文章
全文:
详细
Ending of COVID-19 pandemic does not exclude subsequent breakthrough infections caused by SARS-CoV-2 mutant strains. The rate of SARS-CoV-2 mutations increased with emerging omicron strain and exceeds those of the influenza virus. It remains unclear what IgG antibody levels are able to protect against new mutant SARS-CoV-2 strains, and how long the immune protection will last. The objective of this study was to monitor the maintenance of humoral and cellular immunity to SARS-CoV-2 viral antigens over 4 years after the infection. Thirty-two adult reconvalescents after COVID-19 were annually examined for humoral and cellular immunity markers to the SARS-CoV-2 S protein. Humoral immunity was assessed by ELISA; cellular immunity was evaluated by expression of CD107a on CD8hi lymphocytes after recognition of S protein antigens. A four-year observation of a group of patients who recovered from COVID-19 in 2020 (SARS-CoV-2, Wuhan strain) and were in contact with a novel, freely circulating mutant VoCs showed that, 1 year later, all subjects retained the IgG antibodies to S protein, mainly the IgG1 subclass, but the antibody avidity index barely exceeded 50%. After a breakthrough infection caused by the omicron strain, the level of IgG antibodies to S protein increased significantly, along with sufficient increase of antibody avidity. The IgG2, IgG3, and IgG4 antibodies to S protein occured in the spectrum of subclasses. The level of specific IgA decreased 1 year after the disease against their level after the primary disease. However, it was significantly increased to 4-5 PR after breakthrough infections. Cellular immunity to the SARS-CoV-2 S protein was detected in all subjects at 1 year after the primary disease. After repeated infection with the omicron strain, it increased significantly and remained at this level for the next year. By 4 years, it decreased to the level that was a year after the disease. Hence, humoral and cellular immunity to S protein does not fade away, but continues to persist, maturate, being maintained at a sufficient level. Upon exposure to a new VoC, it allows to endure such a meeting either asymptomatically, or as a mild clinical infection. In view of frequent mutations in the S protein, the role of T-cell responses in anti-infectious protection seems to increase significantly. When developing new vaccines, one should rely on development of cellular immunity.
作者简介
Z. Afridonova
G. Gabrichevsky Research Institute for Epidemiology and Microbiology
Email: zuafrid@gmail.com
ORCID iD: 0000-0002-8743-5247
SPIN 代码: 7835-0397
Researcher, Laboratory of Cytokines
俄罗斯联邦, MoscowAnna Toptygina
G. Gabrichevsky Research Institute for Epidemiology and Microbiology; Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: toptyginaanna@rambler.ru
ORCID iD: 0000-0002-9981-4762
SPIN 代码: 8523-5018
Scopus 作者 ID: 6602424818
PhD, MD (Medicine), Chief Researcher, Head, Laboratory of Cytokines, G. Gabrichevsky Research Institute for Epidemiology and Microbiology; Professor, Department of Immunology, Faculty of Biology, Lomonosov Moscow State University
俄罗斯联邦, Moscow; MoscowElena Semikina
National Medical Research Center of Children’s Health; I. Sechenov First Moscow State Medical University (Sechenov University)
Email: semikinaelena@yandex.ru
ORCID iD: 0000-0001-8923-4652
SPIN 代码: 3647-4967
PhD, MD (Medicine), Chief Researcher, Head, Laboratory Department, National Medical Research Center of Children’s Health; Professor, Department of Pediatrics and Pediatric Rheumatology, Pediatric Faculty, I. Sechenov First Moscow State Medical University (Sechenov University)
俄罗斯联邦, Moscow; Moscow参考
- Афридонова З.Э., Топтыгина А.П., Семикина Е.Л. Сохранение иммунологической памяти к антигенам SARS-CoV-2. Три года наблюдения // Инфекция и иммунитет, 2024. Т. 14, № 1. С. 35-45. [Afridonova Z.E., Toptygina A.P., Semikina E.L. Sustained immunological memory to SARS-CoV-2 antigens. Three years of observation. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2024, Vol. 14, no. 1, pp. 35–45. (In Russ.)] doi: 10.15789/2220-7619-SIM-17596.
- Топтыгина А.П., Афридонова З.Э., Закиров Р.Ш., Семикина Е.Л. Поддержание иммунологической памяти к вирусу SARS-CoV-2 в условиях пандемии // Инфекция и иммунитет, 2023. Т. 13, № 1. C. 55-66. [Toptygina A.P., Afridonova Z.E., Zakirov R.Sh., Semikina E.L., Maintaining immunological memory to the SARS-CoV-2 virus during a pandemic. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, Vol. 13, no. 1, pp. 55-66. (In Russ.)] doi: 10.15789/2220-7619-MIM-2009.
- Топтыгина А.П., Семикина Е.Л., Закиров Р.Ш., Афридонова З.Э. Сопоставление гуморального и клеточного иммунитета у переболевших COVID-19 // Инфекция и иммунитет, 2022. Т. 12, № 3. С. 495-504. [Toptygina A.P., Semikina E.L., Zakirov R. Sh., Afridonova Z.E. Comparison of the humoral and cellular immunity in COVID-19 convalescents. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, Vol. 12, no. 3, pp. 495-504. (In Russ.)] doi: 10.15789/2220-7619-COT-1809.
- Almendro-Vázquez P., Laguna-Goya R., Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front. Immunol., 2023, Vol.14, pp.1107803. doi: 10.3389/fimmu.2023.1107803.
- Dan J.M., Mateus J., Kato Y., Hastie K.M., Yu E.D., Faliti C.E., Grifoni A., Ramirez S.I., Haupt S., Frazier A., Nakao C., Rayaprolu V., Rawlings S.A., Peters B., Krammer F., Simon V., Saphire E.O., Smith D.M., Weiskopf D., Sette A., Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, Vol. 371, no. 6529, eabf4063. doi: 10.1126/science.abf4063.
- Focosi D., Maggi F., Casadevall A. Mucosal vaccines, sterilizing immunity, and the future of SARS-CoV-2 Virulence. Viruses, 2022, Vol. 14, no. 2, 187. doi: 10.3390/v14020187.
- Kundu R., Narean J.S., Wang L., Fenn J., Pillay T., Fernandez N.D., Conibear E., Koycheva A., Davies M., Tolosa-Wright M., Hakki S., Varro R., McDermott E., Hammett S., Cutajar J., Thwaites R.S., Parker E., Rosadas C., McClure M., Tedder R., Taylor G.P., Dunning J., Lalvani A. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat. Commun., 2022, Vol. 13, no. 1, 80. doi: 10.1038/s41467-021-27674-x.
- Markov P.V., Ghafari M., Beer M., Lythgoe K., Simmonds P., Stilianakis N.I., Katzourakis A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol., 2023, Vol. 21, no. 6, pp. 361-379.
- Martin D.P., Lytras S., Lucaci A.G., Maier W., Grüning B., Shank S.D., Weaver S., MacLean O.A., Orton R.J., Lemey P., Boni M.F., Tegally H., Harkins G.W., Scheepers C., Bhiman J.N., Everatt J., Amoako D.G., San J.E., Giandhari J., Sigal A., Williamson C., Hsiao N.Y., von Gottberg A., De Klerk A., Shafer R.W., Robertson D.L., Wilkinson R.J., Sewell B.T., Lessells R., Nekrutenko A., Greaney A.J., Starr T.N., Bloom J.D., Murrell B., Wilkinson E., Gupta R.K., de Oliveira T., Kosakovsky Pond S.L. Selection analysis identifies clusters of unusual mutational changes in omicron lineage BA.1 that likely impact spike function. Mol. Biol. Evol., 2022, Vol. 39, no. 4, msac061. doi: 10.1093/molbev/msac061.
- Mouton W., Oriol G., Compagnon C., Saade C., Saker K., Franc P., Mokdad B., Fleurie A., Lacoux X., Daniel S., Berthier F., Barnel C., Pozzetto B., Fassier J.B., Dubois V., Djebali S., Dubois M., Walzer T., Marvel J., Brengel-Pesce .K, Trouillet-Assant S; Covid ser study group. Combining SARS-CoV-2 interferon-gamma release assay with humoral response assessment to define immune memory profiles. Eur. J. Immunol., 2024, Vol. 54, no. 7, e2451035. doi: 10.1002/eji.202451035.
- Nilles E.J., de St Aubin M., Dumas D., Duke W., Etienne M.C., Abdalla G., Jarolim P., Oasan T., Garnier S., Iihoshi N., Lopez B., de la Cruz L., Puello Y.C., Baldwin M., Roberts K.W., Peña F., Durski K., Sanchez I.M., Gunter S.M., Kneubehl A.R., Murray K.O., Lino A., Strobel S., Baez A.A., Lau C.L., Kucharski A., Gutiérrez E.Z., Skewes-Ramm R., Vasquez M., Paulino C.T. Monitoring temporal changes in SARS-CoV-2 spike antibody levels and variant-specific risk for infection, dominican republic, March 2021-August 2022. Emerg. Infect. Dis., 2023, Vol. 29, no. 4, pp. 723-733.
- Nowill A.E., Caruso M., de Campos-Lima P.O. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front. Immunol., 2023, Vol. 14, 1133225. doi: 10.3389/fimmu.2023.1133225.
- Sette A., Sidney J., Crotty S. T cell responses to SARS-CoV-2. Annu. Rev. Immunol., 2023, Vol. 41, pp. 343-373.
- Wang X., Li J., Liu H., Hu X., Lin Z., Xiong N. SARS-CoV-2 versus Influenza A Virus: Characteristics and Co-Treatments. Microorganisms, 2023, Vol. 11, no. 3, 580. doi: 10.3390/microorganisms11030580.
补充文件
