Exosomal tetraspanins: the role of CD63 and CD81 in pathogenesis of myocardial infarction
- Authors: Reviakina M.O.1, Kabina N.A.1
-
Affiliations:
- I. Turgenev Orel State University
- Issue: Vol 28, No 3 (2025)
- Pages: 811-816
- Section: SHORT COMMUNICATIONS
- URL: https://journals.rcsi.science/1028-7221/article/view/319939
- DOI: https://doi.org/10.46235/1028-7221-17211-ETT
- ID: 319939
Cite item
Full Text
Abstract
Cardiovascular diseases are one of the major global health problems with high prevalence and mortality rates. Complex intercellular communications supported by circulating exosomes, recognized as important participants in the immunopathogenesis of atherosclerosis and coronary heart disease, thus playing a crucial role in pathogenesis and progression of cardiovascular diseases. Presuming tetraspanins (CD63 and CD81) being widely recognized as exosomal markers, the purpose of our study was to determine and evaluate the time dynamics of serum exosomal tetraspanins CD63 and CD81 production on 1st and 7th days after acute myocardial infarction. The study included 40 patients with acute myocardial infarction (AMI) aged 54.29±5.45 years and 10 healthy persons, matched for age and gender. Two types of tetraspanin dynamics were revealed following AMI in acute ischemic process in the myocardium. Type 1 is characterized by initially low values of tetraspanin CD63, compared to healthy individuals, and is accompanied by an increased production/release of exosomal CD63 on day 7; type 2 is characterized by higher CD63 values, exceeding reference values on day 1 after AMI, with its decrease by day 7. Our correlation analysis of tetraspanin CD63 allowed us to establish links with age, cholesterol, LDL, triglycerides and the number of platelets and leukocytes. The CD81 level in blood serum of AMI patients was significantly lower than in healthy individuals. The identified features of the production dynamics allowed us to classify patients by distinct response types: (1) with increase in serum exosomal CD81 and subsequent achievement of the target tetraspanin level typical for healthy individuals; (2) with a decreased concentration against initial level, associated with higher frequency of adverse cardiovascular events. The correlation analysis of serum CD81 allowed us to establish correlations with leukocyte counts, erythrocyte sedimentation rate and obesity grade. Exosomal profile of circulating CD63 and CD81 in individuals with AMI differs quantitatively from healthy subjects, being characterized by different types of dynamics of tetraspanin production during the first week of myocardial infarction.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
M. O. Reviakina
I. Turgenev Orel State University
Author for correspondence.
Email: moplotnikova@mail.ru
PhD (Medicine), Associate Professor of the Department of Immunology and Specialized Clinical Disciplines, Leading Researcher at the Laboratory of Molecular, Translational and Digital Cardioimmunology
Russian Federation, OrelN. A. Kabina
I. Turgenev Orel State University
Email: moplotnikova@mail.ru
Researcher, Laboratory of New Medical Technologies
Russian Federation, OrelReferences
- Снимщикова И.А., Кабина Н.А., Плотникова М.О., Киселева М.В. Перспективы изучения тетраспанина CD9 в патогенезе инфаркта миокарда // Вестник уральской медицинской академической науки, 2024. Т. 21, № 3. С. 223-232. [Snimshhikova I.A., Kabina N.A., Plotnikova M.O., Kiseleva M.V. Prospects for studying tetraspanin CD9 in the pathogenesis of myocardial infarction. Vestnik uralskoy meditsinskoy akademicheskoy nauki = Journal of Ural Medical Academic Science, 2024, Vol. 21, no. 3, pp. 223-232. (In Russ.)]
- Burrello J., Bolis S., Balbi C., Burrello A., Provasi E., Caporali E., Gauthier L.G., Peirone A., d’Ascenzo F., Monticone S., Barile L., Vassalli G. An extracellular vesicle epitope profile is associated with acute myocardial infarction. J. Cell. Mol. Med., 2020, Vol. 24, no. 17, pp. 9945-9957.
- Chong B., Jayabaskaran J., Jauhari S.M., Chan S.P., Goh R., Kueh M.T.W., Li H., Chin Y.H., Kong G., Anand V.V., Wang J.-W., Muthiah M., Jain V., Mehta A., Lim S.L., Foo R., Figtree G.A., Nicholls S.J., Mamas M.A., Januzzi J.L., Chew N., Richards A.M., Chan M.Y. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur. J. Prev. Cardiol., 2024, zwae281. doi: 10.1093/eurjpc/zwae281.
- Fan Y., Pionneau C., Cocozza F., Boëlle P., Chardonnet S., Charrin S., Théry C., Zimmermann P., Rubinstein E. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. J Extracell Vesicles, 2023, Vol. 12, no. 8, e12352. doi: 10.1002/jev2.12352.
- Gao X.F., Wang Z.M., Wang F., Gu Y., Zhang J.J., Chen S.L. Exosomes in coronary artery disease. Int. J. Biol. Sci., 2019, Vol. 15, no. 11, pp. 2461-2470.
- Kalluri R., LeBleu V.S. The biology, function and biomedical applications of exosomes. Science, 2020, Vol. 367, no. 6478, eaau6977. doi: 10.1126/science.aau6977.
- Kestecher B., Németh K., Ghosal S., Sayour N.V., Gergely T.G., Bodnár B.R., Försönits A., Sódar B.W., Oesterreicher J., Holnthoner W., Varga Z.V., Giricz Z., Ferdinandy P., Buzás E.I., Osteikoetxea X. Reduced circulating CD63+ extracellular vesicle levels associate with atherosclerosis in hypercholesterolaemic mice and humans. Cardiovasc. Diabetol., 2024, Vol. 23, no. 1, 368. doi: 10.1186/s12933-024-02459-w.
- Martins-Marques T. Connecting different heart diseases through intercellular communication. Biol. Open, 2021, Vol. 10, no. 9, bio058777. doi: 10.1242/bio.058777.
- Røsand Ø., Høydal M.A. Cardiac exosomes in ischemic heart disease – a narrative review. Diagnostics, 2021, Vol. 11, no. 2, 269. doi: 10.3390/diagnostics11020269.
- Saint-Pol J., Fenart L. CD63, a new therapeutical candidate for cholesterol homeostasis regulation through extracellular vesicles? Extracell Vesicles Circ. Nucl. Acids, 2025, Vol. 6, no. 1, pp. 166-170.
- Schmidt S.C., Massenberg A., Homsi Y., Sons D., Lang T. Microscopic clusters feature the composition of biochemical tetraspanin-assemblies and constitute building-blocks of tetraspanin enriched domains. Sci. Rep., 2024, Vol. 14, no. 1, 2093. doi: 10.1038/s41598-024-52615-1.
- Seth S.M., Aaron W.A., Norrina B.A., Almarzooq Z.I., Anderson C.A.M., Arora P., Avery C.L., Baker-Smith C.M., Bansal N., Beaton A.Z., Commodore-Mensah Y., Currie M.E., Elkind M.S.V., Fan W., Generoso G., Gibbs B.B., Heard D.G., Hiremath S., Johansen M.C., Kazi D.S., Ko D., Leppert M.H., Magnani J.W., Michos E.D., Mussolino M.E., Parikh N.I., Perman S.M., Rezk-Hanna M., Roth G.A., Shah N.S., Springer M.V., St-Onge M.-P., Thacker E.L., Urbut S.M., Van Spall H.G.C., Voeks J.H., Whelton S.P., Wong N.D., Wong S.S., Yaffe K., Palaniappan L.P.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Committee 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation, Vol. 151, no. 8, pp. e41-e660.
Supplementary files
