Lymphocyte subsets in epicardial, thymic and subcutaneous adipose tissue during advanced coronary atherosclerosis in patients with coronary artery disease

封面

如何引用文章

全文:

详细

The important role of epicardial (EAT) and thymic (TAT) adipose tissue in the development of atherosclerosis in patients with coronary artery disease (CAD) is widely discussed. The purpose of the study was to investigate the lymphocyte subsets and FoxP3+Treg lymphocytes in epicardial, thymic and subcutaneous adipose tissue depending on the severity of coronary atherosclerosis in patients with chronic CAD. We examined 24 patients with CAD (21 men; mean age 65.0 (58.0-68.0) years) scheduled for open-heart surgery. In samples of EAT, TAT and subcutaneous adipose tissue (SAT), the content of CD4+, CD8+, B lymphocytes, NK and NKT cells, CD4+CD25hiFoxP3+ and CD4+CD25lowFoxP3+T regulatory lymphocytes (Treg) and a proportion of Tregs with FoxP3 nuclear translocation was determined by imaging flow cytometry. Depending on the severity of atherosclerosis, assessed according to Gensini Score, patients were divided into groups: group 1 – patients with Gensini Score < 65; group 2 – patients with Gensini Score ≥ 65. Patients in group 2 had higher frequency of EAT CD4+CD25lowTreg with FoxP3nuclear translocation, TAT CD8+T lymphocytes and NK cells, a lower content of TAT double positive CD4+CD8+T lymphocytes, and a tendency towards a decrease of frequency of TAT CD4+CD25hiTreg with FoxP3 nuclear translocation compared to patients in group 1. The level of nuclear translocation of FoxP3 in CD4+CD25hiTreg cells in TAT was inversely related to the proportion of CD8+T lymphocytes (rs = -0.653; p = 0.012) and NK cells (rs = -0.723; p = 0.003) in TAT, and directly – to the proportion of double positive CD4+CD8+T lymphocytes in TAT (rs = 0.567; p = 0.034) and the value of the waist-to-hip ratio (rs = -0.474; p = 0.041). Further research is required to study the molecular mechanisms of these relationships in patients with coronary atherosclerosis and chronic coronary artery disease.

作者简介

I. Kologrivova

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ikologrivova@gmail.com

PhD (Medicine), Senior Research Associate, Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Tomsk

A. Dmitriukov

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: ikologrivova@gmail.com

Postgraduate Student, Junior Research Associate, Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Tomsk

N. Naryzhnaya

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: ikologrivova@gmail.com

PhD, MD (Medicine), Leading Research Associate, Laboratory of Experimental Cardiology

俄罗斯联邦, Tomsk

O. Koshelskaya

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: ikologrivova@gmail.com

PhD, MD (Medicine), Professor, Leading Research Associate, Department of Atherosclerosis and Coronary Artery Disease

俄罗斯联邦, Tomsk

O. Kharitonova

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: ikologrivova@gmail.com

Junior Research Associate, Department of Atherosclerosis and Coronary Artery Disease

俄罗斯联邦, Tomsk

A. Vyrostkova

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: ikologrivova@gmail.com

Research Laboratory Assistant, Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Tomsk

V. Evtushenko

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: ikologrivova@gmail.com

PhD, MD (Medicine), Doctor of the Department of Cardiovascular Surgery

俄罗斯联邦, Tomsk

A. Krapivina

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: ikologrivova@gmail.com

Research Laboratory Assistant, Department of Atherosclerosis and Coronary Artery Disease

俄罗斯联邦, Tomsk

P. Riabchenko

Siberian State Medical University

Email: ikologrivova@gmail.com

Student

俄罗斯联邦, Tomsk

T. Suslova

Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences

Email: ikologrivova@gmail.com

PhD (Medicine), Head, Department of Clinical Laboratory Diagnostics

俄罗斯联邦, Tomsk

参考

  1. Козлов В.А. Определяющая роль тимуса в иммунопатогенезе аутоиммунных, онкологических и инфекционных заболеваний // Медицинская иммунология, 2023. Т. 25, № 1. С. 39-58. [Kozlov V.A. Determining role of thymus in immune pathogenesis of autoimmune, oncological and infectious diseases. Meditsinskaya immunologiya = Medical Immunology (Russia), 2023, Vol. 25, no. 1, pp. 39-58. (In Russ.)] doi: 10.15789/1563-0625-DRO-2591.
  2. Кологривова И.В., Кошельская О.А., Суслова Т.Е., Харитонова О.А., Трубачева О.А., Кравченко Е.С., Дмитрюков А.А. Т-лимфоциты FoxP3+ и их взаимосвязь с выраженностью коронарного атеросклероза у пациентов с ишемической болезнью сердца и сахарным диабетом 2 типа: пилотное исследование // Сахарный диабет, 2023. Т. 26, № 3. С. 213-223. [Kologrivova I.V., Suslova T.E., Koshelskaya O.A., Kharitonova O.A., Trubacheva O.A., Kravchenko E.S., Dmitriukov A.A. T-lymphocytes FoxP3+ and their interconnection with the severity of coronary atherosclerosis in patients with coronary artery disease and diabetes mellitus type 2: a pilot study. Sakharnyy diabet = Diabetes Mellitus, 2023, Vol. 26, no. 3, pp. 213-223. (In Russ.)]
  3. Кошельская О.А., Нарыжная Н.В., Кологривова И.В., Суслова Т.Е., Кравченко Е.С., Харитонова О.А., Андреев С.Л., Марголис Н.Ю., Шарыпова Н.Г., Крапивина А.С. Взаимосвязь гипертрофии эпикардиальных адипоцитов с адипокинами, воспалением и метаболизмом глюкозы и липидов // Сибирский журнал клинической и экспериментальной медицины, 2023. Т. 38, № 1. С. 64-74. [Koshelskaya O.A., Naryzhnaya N.N., Kologrivova I.V., Suslova T.E., Kravchenko E.S., Charitonova O.A., Andreev S.L., Margolis N.Yu., Sharipova N.G., Krapivina A.S. Correlation of epicardial adipocytes hypertrophy with adipokines, inflammation and glucose and lipid metabolism. Sibirskiy zhurnal klinicheskoy i eksperimentalnoy meditsiny = Siberian Journal of Clinical and Experimental Medicine, 2023, Vol. 38, no. 1, pp. 64-74. (In Russ.)]
  4. Романцова Т.И. Жировая ткань: цвета, депо и функции // Ожирение и метаболизм, 2021. Т. 18, № 3. С. 282-301. [Romantsova T.I. Adipose tissue: colors, depots and functions. Ozhireniye i metabolizm = Obesity and metabolism, 2021, Vol. 18, no. 3, pp. 282-301. (In Russ.)]
  5. Haugstøyl M.E., Cornillet M., Strand K., Stiglund N., Sun D., Lawrence-Archer L., Hjellestad I.D., Busch C., Mellgren G., Björkström N.K., Fernø J. Phenotypic diversity of human adipose tissue-resident NK cells in obesity. Front. Immunol., 2023, Vol. 14, 1130370. doi: 10.3389/fimmu.2023.1130370.
  6. Hester A.K., Semwal M.K., Cepeda S., Xiao Y., Rueda M., Wimberly K., Venables T., Dileepan T., Kraig E., Griffith A.V. Redox regulation of age-associated defects in generation and maintenance of T cell self-tolerance and immunity to foreign antigens. Cell Rep., 2022, Vol. 38, no. 7, 110363. doi: 10.1016/j.celrep.2022.110363.
  7. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol., 2022, Vol. 19, pp. 593-606.
  8. Kiran S., Kumar V., Murphy E.A., Enos R.T., Singh U.P. High fat diet-induced CD8+ T cells in adipose tissue mediate macrophages to sustain low-grade chronic inflammation. Front, Immunol., 2021, Vol. 12, 680944. doi: 10.3389/fimmu.2021.680944.
  9. Liang Z., Dong X., Zhang Z., Zhang Q., Zhao Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell, 2022, Vol. 21, no. 8, e13671. doi: 10.1111/acel.13671.
  10. Magg T., Mannert J., Ellwart J.W., Schmid I., Albert M.H. Subcellular localization of FOXP3 in human regulatory and nonregulatory T cells. Eur. J. Immunol., 2012, Vol. 42, no. 6, pp. 1627-1638.
  11. Rietdorf K., MacQueen H. Investigating interactions between epicardial adipose tissue and cardiac myocytes: what can we learn from different approaches? Br. J. Pharmacol., 2017, Vol. 174, no. 20, pp.3542-3560.
  12. Sandstedt M., Chung R.W.S., Skoglund C., Lundberg A.K., Östgren C.J., Ernerudh J., Jonasson L. Complete fatty degeneration of thymus associates with male sex, obesity and loss of circulating naïve CD8+ T cells in a Swedish middle-aged population. Immun. Ageing, 2023, Vol. 20, no. 1, 45. doi: 10.1186/s12979-023-00371-7.
  13. Wang K.Y., Zheng Y.Y., Wu T.T., Ma Y.T., Xie X. Predictive value of Gensini Score in the long-term outcomes of patients with coronary artery disease who underwent PCI. Front. Cardiovasc. Med., 2022, Vol. 8, 778615. doi: 10.3389/fcvm.2021.778615.
  14. Winkels H., Ghosheh Y., Kobiyama K., Kiosses W.B., Orecchioni M., Ehinger E., Suryawanshi V., Herrera-de la Mata S., Marchovecchio P., Riffelmacher T., Thiault N., Kronenberg M., Wolf D., Seumois G., Vijayanand P., Ley K. Thymus-derived CD4+CD8+ cells reside in mediastinal adipose tissue and the aortic arch. J. Immunol., 2021, Vol. 207, no. 11, pp. 2720-2732.
  15. Zeng Q., Sun X., Xiao L., Xie Z., Bettini M., Deng T. A unique population: adipose-resident regulatory T cells. Front. Immunol., 2018, Vol. 9, 2075. doi: 10.3389/fimmu.2018.02075.

版权所有 © Кологривова И., Дмитрюков А., Нарыжная Н., Кошельская О., Харитонова О., Выросткова А., Евтушенко В., Крапивина А., Рябченко П., Суслова Т., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可
##common.cookie##