Роль макрофагов в подагрическом воспалении

Обложка

Цитировать

Полный текст

Аннотация

Подагра является самой распространенной причиной воспалительного артрита. Этиологическим фактором подагры является гиперурикемия, которая приводит к образованию растворимых уратов и труднорастворимых кристаллов уратов в суставах и тканях. Обзор суммирует современные представления о механизмах подагрического аутовоспаления и анализирует перспективы новых подходов к лечению подагры. При подагре, воспаление связано с фагоцитозом кристаллов и активацией инфламмасомы NLRP3 в макрофагах. Этот процесс состоит из подготовительной стадии и стадии генерации провоспалительных цитокинов. На стадии подготовки растворимые ураты и кристаллы уратов инициируют в макрофагах транскрипцию предшественников IL-1β и других провоспалительных цитокинов, синтез компонентов инфламмасомы NLRP3 и формирование иммунной памяти. Увеличение транскрипции предшественников IL-1β и других цитокинов реализуется через PRAS40-AKT-mTOR сигнальный путь, антивоспалительный фактор IL-1ra и через TLR-MyD88-IRAK-NF-κB-путь; увеличение синтеза компонентов инфламмасомы NLRP3 – через TLR-NF-κB-путь, а формирование иммунной памяти происходит благодаря эпигенетическим модификациям, обусловленным (де-) ацетилированием и (де-) метилированием гистонов и ДНК. На следующей стадии, действие растворимых уратов и кристаллов уратов на макрофаги стимулирует активацию инфламмасомы NLRP3 благодаря: 1) изменению ионных токов К+, Cl- и Са2+; 2) повреждению лизосом и митохондрий и выход катепсина B и увеличения продукции реактивных форм кислорода, соответственно; 3) изменению локализации NLRP3 между эндоплазматическим ретикулумом, аппаратом Гольджи и цитозолем и 4) изменению структуры NLRP3 в результате присоединения вспомогательных белков, фосфорилирования, убиквитилирования и ацетилирования. Активность инфламмасомы NLRP3 проявляется в продукции активной каспазы 1, которая продуцирует IL-1β и белки пироптотических пор. Через пироптотически поры высвобождаются IL-1β, которые еще больше усиливают воспаление. При пироптозе из клеток высвобождаются растворимые ураты и кристаллы уратов, еще больше усиливая воспаление и повреждение тканей. Понимание механизмов подагрического воспаления позволяет сформулировать перспективные направления для разработки новых методов лечения. Макрофаги играют ключевую роль в развитии кристалл-индуцированного воспаления. Поэтому разработка новых биотехнологий основанных на макрофагах может оказаться весьма перспективной в лечении подагры. В обзоре проанализирована возможность использования М3-фенотипа макрофагов (АВ-M3), который, в отличие от М1- и М2-фенотипов, на действие воспалительных факторов может продуцировать антивоспалительные цитокины и благодаря этому подавлять кристалл-индуцированное воспаление. При этом, в отличие от препаратов антител против IL-1β, такие как канакинумаб, которые блокируют лишь один конечный продукт подагрического воспаления – IL-1β, АВ-М3-макрофаги снижают не только продукцию IL-1β, но и других воспалительных цитокинов.

Об авторах

Игорь Юрьевич Малышев

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения РФ; ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии»

Email: iymalyshev1@gmail.com
ORCID iD: 0000-0002-2381-9612

д.м.н., заведующий кафедрой патологической физиологии, заведующий лабораторией регуляторных механизмов стресса и адаптации 

Россия, 125315, Москва, ул. Делегатская, 20, стр. 1; Москва

Ольга Олеговна Чернышева

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения РФ

Email: iymalyshev1@gmail.com
ORCID iD: 0000-0003-4712-1240

студентка лечебного факультета

Россия, 125315, Москва, ул. Делегатская, 20, стр. 1

Лариса Вячеславовна Кузнецова

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения РФ

Email: iymalyshev1@gmail.com

к.б.н., ведущий научный сотрудник лаборатории клеточных биотехнологий

Россия, 125315, Москва, ул. Делегатская, 20, стр. 1

Андрей Эдуардович Пихлак

ФГБОУ ВО «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения РФ

Автор, ответственный за переписку.
Email: iymalyshev1@gmail.com

к.м.н., заведующий кафедрой ревматологии и медико-социальной реабилитации

Россия, 125315, Москва, ул. Делегатская, 20, стр. 1

Список литературы

  1. Калиш С.В., Лямина С.В., Кузнецова Л.В., Буданова О.П., Логачев В.А., Пихлак А.Э., Малышев И.Ю. Антивоспалительный искусственно запрограммированный М3 фенотип макрофагов ограничивает кристалл-индуцированное подагрическое воспаление in vitro // Патогенез, 2020. № 2. C. 45-52. [Kalish S.V., Lyamina S.V., Kuznetsova L.V., Budanova O.P., Logachev V.A., Pihlak A.E., Malyshev I.Yu. The anti-inflammatory, artificially programmed M3 macrophage phenotype restricts crystal-induced gouty inflammation in vitro. Patogenez = Pathogenesis, 2020, no. 2, pp. 45-52. (In Russ.)]
  2. Малышев И.Ю., Пихлак А.Э., Кузнецова Л.В., Калиш С.В., Лямина С.В., Логачев В.А. Модифицированный антивоспалительный макрофаг, способ его получения и применения // Патент № 2739572 Российская Федерация, МПК C12N 5/0786 (2010.01) A61K 35/15 (2015.01) A61P 29/00 (2006.01). № 2017105030: заявл. 06.12.2020, опубл. 25.12.2020, C. 1-25. [Malyshev I.Yu., Pihlak A.E., Kuznetsova L.V., Kalish S.V., Lyamina S.V., Logachev V.A. Modified anti-inflammatory macrophage, a method for production and usethere of. // Patent No. 2739572 Russian Federation, IPC C12N5/0786 (2010.01) A61K 35/15 (2015.01) A61P 29/00 (2006.01). No. 2017105030, application 06.12.2020, publ. 25.12.2020, pp. 1-25].
  3. Abais J.M., Xia M., Zhang Y., Boini K.M., Li P.L. Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector? Antioxid. Redox Signal., 2015, Vol. 22, no. 13, pp. 1111-1129.
  4. Alvarez M.M., Liu J.C., Trujillo-de Santiago G., Cha B.H., Vishwakarma A., Ghaemmaghami A.M., Khademhosseini A. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications. J. Control. Release, 2016, Vol. 240, pp. 349-363.
  5. Arts-Rob J.W., Novakovic B., ter Horst R., Carvalho A., Bekkering S., Lachmandas E., Rodrigues F., Silvestre R., Cheng S., Shuang-Yin W., Habibi E., Gonçalves Luís G., Mesquita I., Cunha C., van Laarhoven A., van de Veerdonk F.L., Williams D.L., van der Meer Jos W.M., Logie C., O’Neill L.A., Dinarello C.A., Riksen Niels P., van Crevel R., Clish C., Notebaart Richard A., Joosten A.B., Stunnenberg H.G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity article glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab., 2016, Vol. 24, no. 6, pp. 807-819.
  6. Barbero F., Russo L., Vitali M., Piella J., Salvo I., Borrajo M.L., Busquets-Fité M., Grandori R., Bastús N.G., Casals E., Puntes V. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Semin. Immunol., 2017, Vol. 34, pp. 52-60.
  7. Bauernfeind F.G., Horvath G., Stutz A., Alnemri E.S., Mac Donald K., Speert D., Fernandes-Alnemri T., Wu J., Monks B.G., Fitzgerald K.A., Hornung V., Latz E. Cutting Edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, Vol. 183, no. 2, pp. 787-791.
  8. Bekkering S., Arts R.J., Novakovic B., Kourtzelis I., vander Heijden C.D., Li Y., Popa C.D., ter Horst R., van Tuij J., Netea-Maier R.T., van de Veerdonk F.L., Chavakis T., Joosten L.A., van der Meer J.W., Stunnenberg H., Riksen N.P., Netea M.G. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018, Vol. 172, no. 1-2, pp. 135-146.e9.
  9. Boraschi D., Italiani P. Innate immune memory: Time for adopting a correct terminology. Front. Immunol., 2018, Vol. 9, 799. doi: 10.3389/fimmu.2018.00799.
  10. Bowdish D.M., Loffredo M.S., Mukhopadhyay S., Mantovani A., Gordon S. Macrophage receptors implicated in the ‘adaptive’ form of innate immunity. Microbes Infect., 2007, Vol. 9, no. 14-15, pp. 1680-1687.
  11. Braga T.T., Forni M.F., Correa-Costa M., Ramos R.N., Barbuto J.A., Branco P., Castoldi A., Hiyane M.I., Davanso M.R., Latz E., Franklin B.S., Kowaltowski A.J., Camara N.O. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci. Rep., 2017, Vol. 7, no. 13, pp. 1-14.
  12. Brough D., Rothwell N.J. Caspase-1-dependent processing of pro-interleukin-1beta is cytosolic and precedes cell death. J. Cell Sci., 2007, Vol. 120, no. 5, pp. 772-781.
  13. Broz P., Pelegrín P. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol., 2020, Vol. 20, no. 3, pp. 143-157.
  14. Broz P.D., Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol., 2016, Vol. 16, no. 7, pp. 407-420.
  15. Cabău G., Crișan T.O., Klück V., Popp R.A., Joosten L.A. Urate-induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol. Rev., 2020, Vol. 294, no. 1, pp. 92-105.
  16. Cai X., Chen J., Xu H., Liu S., Jiang Q.X., Halfmann R., Chen Z.J. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell, 2014, Vol. 156, no. 6, pp. 1207-1222.
  17. Chan M., Gómez-Aristizábal A., Gandhi R. Ex vivo polarized pro-inflammatory vs. homeostatic monocytes/macrophages elicit differential responses within a human osteoarthritic joint explant model. Osteoarthr. Cartil., 2019, Vol. 27, Suppl. 1, pp. 379-380.
  18. Chan M.W.Y., Viswanathan S. Recent progress on developing exogenous monocyte / macrophage-based therapies for inflammatory and degenerative diseases. Cytotherapy, 2019, Vol. 21, no. 4, pp. 393-415.
  19. Chen C.J., Shi Y., Hearn A., Fitzgerald K., Golenbock D., Reed G., Akira S., Rock K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, Vol. 116, no. 8, pp. 2262-2271.
  20. Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q.P. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr. Cancer Drug Targets, 2011, Vol. 11, no. 3, pp. 239-253.
  21. Chen J.C., PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature, 2018, Vol. 564, no. 7764, pp. 71-76.
  22. Chen Y.H., Hsieh S.C., Chen W.Y., Li K.J., Wu C.H., Wu P.C., Tsai C.Y., Yu C.L. Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGF β 1, IL-10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3. Nat. Rev. Rheumatol., 2017, Vol. 13, no. 11, pp. 639-647.
  23. Chung Y., Kim D., Lee W. Monosodium urate crystal-induced pro-interleukin-1 β production is post-transcriptionally regulated via the p38 signaling pathway in human monocytes. Sci. Rep., 2016, Vol. 6, 34533. doi: 10.1038/srep34533.
  24. Cleophas M.C., Crişan T.O., Lemmers H., Toenhake-Dijkstra H., Fossati G., Jansen T.L., Dinarello C.A., Netea M.G., Joosten L.A. Suppression of monosodium urate crystal-induced cytokine production by butyrate is mediated by the inhibition of class I histone deacetylases. Ann. Rheum. Dis., 2015, Vol. 75, no. 3, pp. 593-600.
  25. Cleophas M.C., Crişan T.O., Klück V., Hoogerbrugge N., Netea-Maier R.T., Dinarello C.A., Netea M.G. Romidepsin suppresses monosodium urate crystal-induced cytokine production through upregulation of suppressor of cytokine signaling 1 expression. Arthritis Res. Ther., 2019, Vol. 21, 50. doi: 10.1186/s13075-019-1834-x.
  26. Coll R.C., Hill J.R., Day C.J., Zamoshnikova A., Boucher D., Massey N.L., Chitty J.L., Fraser J.A., Jennings M.P., Robertson A.A., Schroder K. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol., 2019, Vol. 15, no. 6, pp. 556-559.
  27. Crișan T.O., Cleophas M.C., Oosting M., Lemmers H., Toenhake-Dijkstra H., Netea M.G., Jansen T.L., Joosten L.A. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis., 2016, Vol. 75, no. 4, pp. 755-762.
  28. Crişan T.O., Cleophas M.C., Novakovic B. Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc. Natl Acad. Sci. USA, 2017, Vol. 114, no. 21, pp. 5485-5490.
  29. Cruz C.M., Rinna A., Forman H.J., Ventura A.L., Persechini P.M., Ojcius D.M. ATP Activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem., 2007, Vol. 282, no. 5, pp. 2871-2879.
  30. Cullen S.P., Kearney C.J., Clancy D.M., Martin S.J. Diverse activators of the NLRP3 inflammasome promote IL-1b secretion by triggering necrosis article diverse activators of the NLRP3 inflammasome promote IL-1b secretion by triggering necrosis. Cell Rep., 2015, Vol. 11, no. 10, pp. 1535-1548.
  31. Dalbeth N., Phipps-Green A., Frampton C., Neogi T., Taylor W.J., Merriman T.R. Relationship between serum urate concentration and clinically evident incident gout: An individual participant data analysis. Ann. Rheum. Dis., 2018, Vol. 77, no. 7, pp. 1048-1052.
  32. Dalbeth N., Merriman T.R., Stamp L.K. Gout. Lancet, 2016, Vol. 388, no. 55, pp. 2039-2052.
  33. Dillen C., Delmiro G., Kraus H., Dickhöfer S., Daiber E., Münzenmayer L., Wahl S., Rieber N., Kümmerle-Deschner J., Yazdi A., Franz-Wachtel M., Macek B., Radsak M., Vogel S., Schulte B. Alexander N.R. Human NLRP3 inflammasome activity is regulated by and potentially targetable via BTK. J. Allergy Clin. Immunol., 2017, Vol. 140, no. 4, pp. 1054-1067.e10.
  34. Dinarello C.A. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J. Endotoxin Res., 2004, Vol. 10, no. 4, pp. 201-222.
  35. Duncan J.A., Bergstralh D.T., Wang Y., Willingham S.B., Ye Z., Zimmermann A.G., Ting J.P. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl. Acad. Sci. USA, 2007, Vol. 104, no. 19, pp. 8041-8046.
  36. Franklin B.S., Bossaller L., De Nardo D., Ratter J.M., Stutz A., Engels G., Brenker C., Nordhoff M., Mirandola S.R., Al-Amoudi A., Mangan M.S., Zimmer S., Monks B.G., Fricke M., Schmidt R.E., Espevik T., Jones B., Jarnicki A.G., Hansbro P.M., Busto P., Marshak-Rothstein A., Hornemann S., Aguzzi A., Kastenmüller W., Latz E. The adaptor ASC has extracellular and "prionoid" activities that propagate inflammation. Nat. Immunol., 2014, Vol. 15, no. 8, pp. 727-737.
  37. Green J.P., Yu S., Martín-Sánchez F., Pelegrin P., Lopez-Castejon G., Lawrence C.B., Brough D. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc. Natl Acad. Sci. USA, 2018, Vol. 115, no. 40, pp. 9371-9380.
  38. Gu Y., Zhu Y., Deng G., Liu S., Sun Y., Lv W. Curcumin analogue AI- 44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation. Int. Immunopharmacol., 2021, Vol. 93, 107375. doi: 10.1016/j.intimp.2021.107375.
  39. Guan K., Wei C., Zheng Z., Song T., Wu F., Zhang Y., Cao Y., Ma S., Chen W., Xu Q., Xia W., Gu J., He X., Zhong H. MAVS promotes inflammasome activation by targeting ASC for K63-linked ubiquitination via the E3 Ligase TRAF3. J. Immunol., 2015, Vol. 194, no. 10, pp. 4880-4890.
  40. Han S., Lear T.B., Jerome J.A., Rajbhandari S., Snavely C.A., Gulick D.L., Gibson K.F., Zou C., Chen B.B., Mallampalli R.K. Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCF FBXL2 E3 ligase. J. Biol. Chem., 2015, Vol. 290, no. 29, pp. 18124-18133.
  41. Haneklaus M., Neill L.A., Coll R.C. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr. Opin. Immunol., 2013, Vol. 25, no. 1, pp. 40-45.
  42. Hara H., Tsuchiya K., Kawamura I., Fang R., Hernandez-Cuellar E., Shen Y., Mizuguchi J., Schweighoffer E., Tybulewicz V., Mitsuyama M. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nat. Immunol., 2013, Vol. 14, no. 12, pp. 1247-1255.
  43. He H., Jiang H., Chen Y., Ye J., Wang A., Wang C., Liu Q., Liang G., Deng X., Jiang W., Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, Vol. 9, no. 1, pp. 1-12.
  44. Heilig R., Dick M.S., Sborgi L., Meunier E., Hiller S.B. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol., 2018, Vol. 48, no. 4, pp. 584-592.
  45. Heintzman N.D., Stuart R.K., Hon G., Fu Y., Ching C.W., Hawkins R.D., Barrera L.O., Van Calcar S., Qu C., Ching K.A., Wang W., Weng Z., Green R.D., Crawford G.E., Ren B. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet., 2007, Vol. 39, no. 3, pp. 311-318.
  46. Hoffman H.M., Scott P., Mueller J.L., Misaghi A., Stevens S., Yancopoulos G.D., Murphy A., Valenzuela D.M., Liu-Bryan R. Role of the leucine-rich repeat domain of cryopyrin / NALP3 in monosodium urate crystal – induced inflammation in mice. Arthritis Rheum, 2010, Vol. 62, no. 7, pp. 2170-2179.
  47. Holzinger D., Nippe N., Vogl T., Marketon K., Mysore V., Weinhage T., Dalbeth N., Pool B., Merriman T., Baeten D., Ives A., Busso N., Foell D., Bas S., Gabay C., Roth J. Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheum., 2014, Vol. 66, no. 5, pp. 1327-1339.
  48. Hong S., Hwang I., Gim E., Yang J., Park S., Yoon S.H., Lee W.W., Yu J.W. Brefeldin A – sensitive ER-Golgi vesicle trafficking contributes to NLRP3-dependent caspase-1 activation. FASEB J., 2018, Vol. 33, no. 3, pp. 4547-4558.
  49. Hu G., Su Y., Kang B.H., Fan Z., Dong T., Brown D.R., Cheah J., Wittrup K.D., Chen J. High-throughput phenotypic screen and transcriptional analysis identify new compounds and targets for macrophage reprogramming. Nat. Commun., 2021, Vol. 12, no. 1, 773. doi: 10.1038/s41467-021-21066-x.
  50. Huang Y., Wang H., Hao Y., Lin H., Dong M., Ye J., Song L., Wang Y., Li Q., Shan B., Jiang Y., Li H., Shao Z., Kroemer G., Zhang H., Bai L., Jin T., Wang C., Ma Y., Cai Y., Ding C., Liu S., Pan Y., Jiang W., Zhou R. Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity. Nat. Cell Biol., 2020, Vol. 22, no. 6, pp. 716-727.
  51. Hung Z., Kanneganti T.D., Rehman J., Malik A.B. The TWIK2 potassium efflux channel in macrophages article the TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity, 2018, Vol. 49, no. 1, pp. 56-65.
  52. Janewey C.J., Medzhitov R. Innate Immune recognition: mechanisms and pathways. Immunol. Rev., 2000, Vol. 173, pp. 89-97.
  53. Jenuwein T., Allis C.D. Translating the histone code. Science, 2001, Vol. 293, no. 5532, pp. 1074-1080.
  54. Jiang H., He H., Chen Y., Huang W., Cheng J., Ye J., Wang A., Tao J., Wang C., Liu Q., Jin T., Jiang W., Deng X., Zhou R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, Vol. 214, no. 11, pp. 3219-3238.
  55. Kuo C.F., Luo S.F., See L.C., Chou I.J., Fang Y.F., Yu K.Н. Increased risk of cancer among gout patients: A nationwide population study. Joint Bone Spine, 2012, Vol. 79, no. 4, pp. 375-378.
  56. Kuo C.F., Luo S.F., See L.C., Chou I.J., Fang Y.F., Yu K.H. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol., 2015, Vol. 11, no. 11, pp. 649-662.
  57. Lee G.S., Subramanian N., Kim A.I., Aksentijevich I., Goldbach-Mansky R., Sacks D.B., Germain R.N., Kastner D.L. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012, Vol. 492, no. 7427, pp. 123-127.
  58. Liu-Bryan R., Scott P., Sydlaske A., Rose D.M., Terkeltaub R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum., 2005, Vol. 52, no. 9, pp. 2936-2946.
  59. Luo H., Zheng Z., Qiao Q., Wang L., Tan M., Ohkubo R., Mu W.C., Zhao S., Wu H., Chen D. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance article an acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab., 2020, Vol. 31, no. 3, pp. 580-591.e5.
  60. Mahla R.S., Reddy M.C., Prasad D.V., Kumar H. Sweeten PAMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Front. Immunol., 2013, Vol. 4, 248. doi: 10.3389/fimmu.2013.00248.
  61. Malyshev I., Malyshev Y. Current concept and update of the macrophage plasticity concept: Intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. BioMed Research International. Biomed Res. Int., 2015, Vol. 2015, 341308. doi: 10.1155/2015/341308.
  62. Mangan M.S., Olhava E.J., Roush W.R., Seidel H.M., Glick G.D., Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, Vol. 17, no. 9, 688. doi: 10.1038/nrd.2018.149.
  63. Mao L., Kitani A., Hiejima E., Montgomery-Recht K., Zhou W., Fuss I., Wiestner A.S. Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1 β – mediated colitis. J. Clin. Invest., 2020, Vol. 130, no. 4, pp. 1793-1807.
  64. Martillo M.A., Nazzal L., Crittenden D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep., 2014, Vol. 16, no. 2, 400. doi: 10.1007/s11926-013-0400-9.
  65. Martin B.N., Wang C., Willette-Brown J. IKKα negatively regulates ASC-dependent inflammasome activation. Nat. Commun., 2014, Vol. 30, no. 5, 4977. doi: 10.1038/ncomms5977.
  66. Martin W.J., Walton M., Harper J. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal – induced murine peritoneal model of acute gout. Arthritis Rheum., 2009, Vol. 60, no. 1, pp. 281-289.
  67. Martinon F., Pétrilli V., Mayor A., Tardivel A., Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, Vol. 440, no. 7081, pp. 237-241.
  68. Matzinger P. The danger model: A renewed sense of self. Science, 2002, Vol. 296, no. 5566, pp. 301-305.
  69. Misawa T., Takahama M., Kozaki T., Lee H., Zou J., Saitoh T. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol., 2013, Vol. 14, no. 5, pp. 454-460.
  70. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, Vol. 8, no. 12, pp. 958-969.
  71. Murakami T., Ockinger J., Yu J., Byles V., Mc Coll A., Hofer A.M., Horng T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA, 2012, Vol. 109, no. 28, pp. 11282-11287.
  72. Nakayama M. Macrophage recognition of crystals and nanoparticles. Front. Immunol., 2018, Vol. 9, 103. doi: 10.3389/fimmu.2018.00103.
  73. Narayanan K.B., Park H.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis, 2015, Vol. 20, no. 2, pp. 196-209.
  74. Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. Macrophage polarization: different gene signatures in M1 ( LPS+ ) vs. сlassically and M2 (LPS–) vs. alternatively activated macrophages. Front. Immunol., 2019, Vol. 10, 1084. doi: 10.3389/fimmu.2019.01084.
  75. Place R.F., Noonan E.J., Giardina C. HDAC inhibition prevents NF-κB activation by suppressing proteasome activity: Down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem. Pharmacol., 2005, Vol. 70, no. 3, pp. 394-406.
  76. Portela A., Esteller M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, Vol. 28, no. 10, pp. 1057-1068.
  77. Pradeu T., Cooper E.L. The danger theory: 20 years later. Front. Immunol., 2012, Vol. 3, 287. doi: 10.3389/fimmu.2012.00287.
  78. Qi W.C. Research advances in NLRP3 inflammasome. Basic Clin. Med., 2015, Vol. 15, no. 1, pp. 115-121.
  79. Ragab G., Elshahaly M., Bardin T. Gout: An old disease in new perspective – A review. J. Adv. Res., 2017, Vol. 8, no. 5, pp. 495-511.
  80. Rahimi-Sakak F., Maroofi M., Rahmani J., Bellissimo N.H. Serum uric acid and risk of cardiovascular mortality: A systematic review and dose-response meta-analysis of cohort studies of over a million participants. BMC Cardiovasc. Disord., 2019, Vol. 19, no. 1, pp. 1-8.
  81. Rashidi M., Simpson D.S., Hempel A., Frank D., Petrie E., Vince A., Feltham R., Murphy J., Chatfield S.M., Salvesen G.S., Murphy J.M., Wicks I.P., Vince J.E. The pyroptotic cell death effector gasdermin d is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release. J. Immunol., 2019, Vol. 203, no. 3, pp. 736-748.
  82. Rashidi M., Simpson D.S., Hempel A., Frank D., Petrie E., Vince A., Feltham R., Murphy J., Chatfield S.M., Salvesen G.S., Murphy J.M., Wicks I.P., Vince J.E. Adsorption of proteins on m-CPPD and urate crystals inhibits crystal-induced cell responses: Study on albumin-crystal interaction. J. Funct. Biomat., 2019, Vol. 10, no. 2, pp. 1-19.
  83. Robinson P.C., Horsburgh S. Gout: Joints and beyond, epidemiology, clinical features, treatment and co-morbidities. Maturitas, 2014, Vol. 78, no. 4, pp. 245-251.
  84. Rock K.L., Kataoka H., Lai J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol., 2013, Vol. 9, no. 1, pp. 13-23.
  85. Saeed S., Quintin J., Kerstens H.H., Rao N.A., Aghajanirefah A., Matarese F., Cheng S.C., Ratter J., Berentsen K., van der Ent M.A., Sharifi N., Janssen-Megens E.M., Ter Huurne M., Mandoli A., van Schaik T., Ng A., Burden F., Downes K., Frontini M., Kumar V., Giamarellos-Bourboulis E.J., Ouwehand W.H., van der Meer J.W., Joosten L.A., Wijmenga C., Martens J.H., Xavier R.J., Logie C., Netea M.G., Stunnenberg H.G. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014, Vol. 345, no. 6204, 1251086. doi: 10.1126/science.1251086.
  86. Scanu A., Luisetto R., Oliviero F., Gruaz L., Sfriso P., Burger D., Punzi L. High-density lipoproteins inhibit urate crystal-induced inflammation in mice. Ann. Rheum. Dis., 2015, Vol. 74, no. 3, pp. 587-594.
  87. Schiltz C., Lioté F., Prudhommeaux F., Meunier A., Champy R., Callebert J., Bardin T. Monosodium urate monohydrate crystal-induced inflammation in vivo: Quantitative histomorphometric analysis of cellular events. Arthritis Rheum., 2002, Vol. 46, no. 6, pp. 1643-1650.
  88. Schlesinger N., Thiele R.G., Wood U.R. The pathogenesis of bone erosions in gouty arthritis. Ann. Rheum. Dis., 2010, Vol. 69, no. 11, pp. 1907-1912.
  89. Scott P., Ma H., Viriyakosol S., Terkeltaub R., Liu-Bryan R. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J. Immunol., 2006, Vol. 177, no. 9, pp. 6370-6378.
  90. So A., Dumusc A., Nasi S. The role of IL-1 in gout: from bench to bedside. Rheumatology (Oxford), 2018, Vol. 57, pp. 12-19.
  91. So A.K., Martinon F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol., 2017, Vol. 13, no. 11, pp. 639-647.
  92. Swanson K.V. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol., 2019, Vol. 19, no. 8, pp. 477-489.
  93. Tapia-Abellán A., Angosto-Bazarra D., Martínez-Banaclocha H., de Torre-Minguela C., Cerón-Carrasco J.P., Pérez-Sánchez H., Arostegui J.I., Pelegrin P. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol., 2019, Vol. 15, no. 6, pp. 560-564.
  94. Triantafilou K., Hughes T.R., Triantafilou M.B. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J. Cell Sci., 2013, Vol. 126, no. 13, pp. 2903-2913.
  95. Vajjhala P.R., Mirams R.E., Hill J.M. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J. Biol. Chem., 2012, Vol. 287, no. 50, pp. 41732-41743.
  96. Vandanmagsar B., Youm Y.H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., Ravussin E., Stephens J.M., Dixit V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med., 2011, Vol. 17, no. 2, pp. 179-189.
  97. Vazirpanah N., Ottria A., van der Linden M., Wichers C.G., Schuiveling M., van Lochem E., Phipps-Green A., Merriman T., Zimmermann M., Jansen M., Radstake T.R., Broen J.C. mTOR inhibition by metformin impacts monosodium urate crystal – induced inflammation and cell death in gout: a prelude to a new add-on therapy? Ann. Rheum. Dis., 2019, Vol. 78, no. 5, pp. 663-671.
  98. Vincent T.L. IL-1 in osteoarthritis: time for a critical review of the literature. F1000Res., Vol. 8, pp. 1-8.
  99. Wan P., Zhang Q., Liu W., Jia Y., Ai S., Wang T., Wang W., Pan P., Yang G., Xiang Q., Huang S., Yang Q., Zhang W., Liu F., Tan Q., Zhang W., Wu K., Liu Y., Wu J. Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation. FASEB J., 2019, Vol. 33, no. 4, pp. 5793-5807.
  100. Wang B., Chen S., Qian H., Zheng Q., Chen R., Liu Y., Shi G. Role of T cells in the pathogenesis and treatment of gout. Int. Immunopharmacol., 2020, Vol. 8, 106877. doi: 10.1016/j.intimp.2020.106877.
  101. Wang H., Mao L., Meng G. The NLRP3 Inflammasome activation in human or mouse cells , sensitivity causes puzzle. Protein Cell, 2013, Vol. 4, no. 8, pp. 565-568.
  102. Wang K., Sun Q., Zhong X., Zeng M., Zeng H., Shi X., Li Z., Wang Y., Zhao Q., Shao F., Ding J. Structural mechanism for GSDMD targeting by article structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell, 2020, Vol. 180, no. 5, pp. 941-955.e20.
  103. Wang K., Sun Q., Zhong X., Zeng M., Zeng H., Shi X., Li Z., Wang Y., Zhao Q., Shao F., Ding J. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019, Vol. 570, 7761, pp. 338-343.
  104. Weber A.N., Bittner Z.A., Shankar S., Liu X., Chang T.H., Jin T., Tapia-Abellán A. Recent insights into the regulatory networks of NLRP3 inflammasome activation. J. Cell Sci., 2020, Vol. 133, no. 23, jcs248344. doi: 10.1242/jcs.248344.
  105. Wu M., Tian Y., Wang Q., Guo C. Gout: a disease involved with complicated immunoinflammatory responses: a narrative review. Clin. Rheumatol., 2020, Vol. 39, no. 10, pp. 2849-2859.
  106. Xiong H., Du W., Zhang Y.J., Hong J., Su W.Y., Tang J.T., Wang Y.C., Lu R., Fang J.Y. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2 / STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol. Carcinog., 2012, Vol. 184, pp. 174-184.
  107. Yan S., Zhang P., Xu W., Liu Y., Wang B., Jiang T., Hua C., Wang X., Xu D., Sun B. Serum uric acid increases risk of cancer incidence and mortality: a systematic review and meta-analysis. Mediat. Inflamm., 2015, Vol. 2015, 764250. doi: 10.1155/2015/764250.
  108. Yaron J.R., Gangaraju S., Rao M.Y., Kong X., Zhang L., Su F., Tian Y., Glenn H.L., Meldrum D.R. K(+) regulates Ca(2+) to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis., 2015, Vol. 6, pp. 19-24.
  109. Yunna C., Mengru H., Lei W., Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol., 2020, Vol. 877, no. 3, pp. 173-190.
  110. Zahid A., Li B., Kombe A.J., Jin T.J. Pharmacological inhibitors of the NLRP3 inflammasome. Front. Immunol., 2019., Vol. 10, 2538. doi: 10.3389/fimmu.2019.02538.
  111. Zhang Z., Meszaros G., He W.T., Xu Y., de Fatima Magliarelli H., Mailly L., Mihlan M., Liu Y., Puig Gámez M., Goginashvili A., Pasquier A., Bielska O., Neven B., Quartier P., Aebersold R., Baumert T.F., Georgel P., Han J., Ricci R. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J. Exp. Med., 2017, Vol. 214, no. 9, pp. 2671-2693.
  112. Zhou R., Yazdi A.S., Menu P. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, Vol. 469, no. 7329, pp. 221-225.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Малышев И.Ю., Чернышева О.О., Кузнецова Л.В., Пихлак А.Э., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах