Localization of torsion vibrations in a discrete model of alkanes


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A simple coarse-grained model of a crystal of normal paraffin (the united-atom model) is considered. By using an original semi-inverse method, it is shown that, alongside with known polymorphic transitions, the model under consideration assumes a dynamic transition, which manifests itself in the localization of vibration energy at a certain threshold value of excitation energy. The prediction of the conditions of this transition requires analytical determination of the spectrum of nonlinear normal modes with arbitrary amplitudes of vibrations because the instability of the mode with the lowest wavenumber is a necessary energy localization condition. The equations obtained make it possible to investigate the resonance interaction between the nonlinear normal modes near the low-frequency edge of the spectrum resulting in capture of the vibration energy by one of the parts of the chain. The conditions of localization of the vibration energy revealed determine the necessary initial data for computer modeling of the predicted dynamic transition in normal paraffins.

作者简介

V. Smirnov

Semenov Institute of Chemical Physics

编辑信件的主要联系方式.
Email: vvs@polymer.chph.ras.ru
俄罗斯联邦, Moscow, 119991

L. Manevich

Semenov Institute of Chemical Physics

Email: vvs@polymer.chph.ras.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017