Hamilton’s principle and the rolling motion of a symmetric ball


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we show that the trajectories of a dynamical system with nonholonomic constraints can satisfy Hamilton’s principle. As the simplest illustration, we consider the problem of a homogeneous ball rolling without slipping on a plane. However, Hamilton’s principle is formulated either for a reduced system or for a system defined in an extended phase space. It is shown that the dynamics of a nonholonomic homogeneous ball can be embedded in a higher-dimensional Hamiltonian phase flow. We give two examples of such an embedding: embedding in the phase flow of a free system and embedding in the phase flow of the corresponding vakonomic system.

作者简介

A. Borisov

Blagonravov Mechanical Engineering Research Institute of RAS; Udmurt State University

编辑信件的主要联系方式.
Email: borisov@rcd.ru
俄罗斯联邦, Moscow, 117334; Izhevsk, 426034

A. Kilin

Udmurt State University

Email: borisov@rcd.ru
俄罗斯联邦, Izhevsk, 426034

I. Mamaev

Institute of Mathematics and Mechanics of the Ural Branch of RAS; Kalashnikov Izhevsk State Technical University

Email: borisov@rcd.ru
俄罗斯联邦, Ekaterinburg, 620990; Izhevsk, 426069

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017