Stability of a Vertical Rod on a Vibrating Support
- Авторы: Morozov N.F.1, Belyaev A.K.2, Tovstik P.E.1, Tovstik T.P.2
-
Учреждения:
- St. Petersburg State University, Staryi Peterhof
- Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
- Выпуск: Том 63, № 9 (2018)
- Страницы: 380-384
- Раздел: Mechanics
- URL: https://journals.rcsi.science/1028-3358/article/view/192463
- DOI: https://doi.org/10.1134/S1028335818090069
- ID: 192463
Цитировать
Аннотация
This work contains a generalization of Kapitsa’s classical problem. The stability of the vertical position of a flexible rod with a lower support point under gravity and vibrations is considered. It has been shown that an unstable position can become stable in the presence of vertical harmonic vibrations of the base. Both rigid and hinge fixing of the lower rod end are considered. In the linear approximation, the problem is reduced to transverse oscillations of the rod under the action of periodic axial compression. The solution is obtained in two formulations—taking into account the propagation of longitudinal waves in the rod and without regard for it. It turns out that longitudinal waves significantly reduce the base vibration level necessary for the stability.
Об авторах
N. Morozov
St. Petersburg State University, Staryi Peterhof
Email: peter.tovstik@mail.ru
Россия,
St. Petersburg, 198504
A. Belyaev
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
Email: peter.tovstik@mail.ru
Россия, St. Petersburg, 199178
P. Tovstik
St. Petersburg State University, Staryi Peterhof
Автор, ответственный за переписку.
Email: peter.tovstik@mail.ru
Россия,
St. Petersburg, 198504
T. Tovstik
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences
Email: peter.tovstik@mail.ru
Россия, St. Petersburg, 199178
Дополнительные файлы
