Semi-Inverse Solution of a Pure Beam Bending Problem in Gradient Elasticity Theory: The Absence of Scale Effects
- Autores: Lomakin E.V.1,2, Lurie S.A.3,2, Rabinskiy L.N.2, Solyaev Y.O.3,2
-
Afiliações:
- Moscow State University
- Moscow Aviation Institute (National Research University)
- Institute of Applied Mechanics
- Edição: Volume 63, Nº 4 (2018)
- Páginas: 161-164
- Seção: Mechanics
- URL: https://journals.rcsi.science/1028-3358/article/view/192849
- DOI: https://doi.org/10.1134/S1028335818040031
- ID: 192849
Citar
Resumo
The semi-inverse solutions of pure beam bending problems within the three-dimensional formulation of gradient elasticity theory as exact tests for the problem of estimating the efficient bending stiffness of so-called scale-dependent thin beams and plates due to the necessity of modeling sensing devices are presented. It is shown that the solutions within the gradient elasticity theory give classic beam bending stiffnesses and demonstrate the invalidity of the widespread results and estimates obtained in the past 15 years during study of scale effects within the gradient beam theories, according to which the relative bending stiffness grows by a hyperbolic law with decreasing thickness.
Sobre autores
E. Lomakin
Moscow State University; Moscow Aviation Institute (National Research University)
Autor responsável pela correspondência
Email: lomakin@mech.math.msu.su
Rússia, Moscow, 119992; Moscow, 125993
S. Lurie
Institute of Applied Mechanics; Moscow Aviation Institute (National Research University)
Email: lomakin@mech.math.msu.su
Rússia, Moscow, 125040; Moscow, 125993
L. Rabinskiy
Moscow Aviation Institute (National Research University)
Email: lomakin@mech.math.msu.su
Rússia, Moscow, 125993
Y. Solyaev
Institute of Applied Mechanics; Moscow Aviation Institute (National Research University)
Email: lomakin@mech.math.msu.su
Rússia, Moscow, 125040; Moscow, 125993
Arquivos suplementares
