Effect of Electron Irradiation on the Optical Properties of Zinc Oxide Powder Modified by Magnesium Oxide Nanoparticles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of modifying ZnO powders with MgO nanoparticles (with a concentration of 0.1–10 wt. %) on their diffuse reflectance spectra in the region of 0.2–2.5 μm before and after irradiation with 30 keV electrons was studied. Modification of ZnO powder was carried out by MgO nanopowder with concentrations from 0.1 to 10 wt. % using a solid-state method at 650°C heating temperature. X-ray diffraction analysis showed that this method of modification there is no formation of additional phases. It has been established that zinc oxide structure symmetry belongs to the P63mc space group, magnesium oxide – to the Fm–3m space group. The spectral reflectance of such powders in the visible region is over 90%. Under irradiating by 30 keV electrons of initial and modified ZnO powders, as well as MgO nanopowder, a decrease in their reflectance recorded in the entire studied region of the spectrum. It has been established that modification with MgO nanoparticles at a concentration of 3 wt. % leads to an increase in radiation resistance by a factor of 1.32 compared to unmodified samples. This effect is determined by the sink of radiation defects on the large specific surface area of nanoparticles.

作者简介

M. Mikhailov

Tomsk State University of Control Systems and Radioelectronics

Email: viktoriay-09@mail.ru
俄罗斯联邦, Tomsk

V. Neshchimenko

Аmur State University

Email: viktoriay-09@mail.ru
俄罗斯联邦, Blagoveshchensk

S. Yuriev

Tomsk State University of Control Systems and Radioelectronics

Email: viktoriay-09@mail.ru
俄罗斯联邦, Tomsk

A. Lapin

Tomsk State University of Control Systems and Radioelectronics

Email: viktoriay-09@mail.ru
俄罗斯联邦, Tomsk

V. Goronchko

Tomsk State University of Control Systems and Radioelectronics

Email: viktoriay-09@mail.ru
俄罗斯联邦, Tomsk

A. Dudin

Аmur State University

Email: viktoriay-09@mail.ru
俄罗斯联邦, Blagoveshchensk

V. Yurina

Tomsk State University of Control Systems and Radioelectronics

编辑信件的主要联系方式.
Email: viktoriay-09@mail.ru
俄罗斯联邦, Tomsk

参考

  1. Tribble A.C., Lukins R., Watts E., Naumov S.F., Serge-ev V.K. // J. Spacecraft Rockets. 1996. V. 33. № 1. P. 160. https://www.doi.org/10.2514/3.55722
  2. Lv J., Li X. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 11882. https://www.doi.org/10.1039/C8CP01855C
  3. Sokolovskiy A., Plis E., Hoffmann R., Bengtson M., Ferguson D. // Surf. Coat. Technol. 2022. V. 451. P. 129030. https://doi.org/10.1016/j.surfcoat.2022.129030
  4. Kiomarsipour N., Razavi R.S., Ghani K. // Dyes Pigments. 2013. V. 96. № 2. P. 403. https://www.doi.org/10.1016/j.dyepig.2012.08.019
  5. Михайлов М.М., Соколовский А.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2006. № 5. С. 72.
  6. Михайлов М.М., Нещименко В.В., Скрипка Н.Г., Хохлов Р.Н. // РАН Перспективные материалы. 2010. № 3. С. 14.
  7. Mikhailov M.M. Optical properties and radiation stability of Metal Oxide Powders modified with Nanoparticles. Volume 6. / Publishing house of Tomsk State University of Control Systems and Radio Electronics. 2019. 312 p.
  8. Mikhailov M.M. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2013. V. 7. P. 133. https://www.doi.org/10.1134/S102745101301028X
  9. Михайлов М.М., Власов В.А. // Известия ВУЗов. Физика. 1998. № 12. С. 52.
  10. Mikhailov M.M., Neshchimenko V.V., He Shiyu, Chundong L. // J. Spacecraft Rocket. 2011. V. 48. № 5. P. 891. https://www.doi.org/10.2514/1.42974
  11. Михайлов М.М., Нещименко В.В., Дедов Н.В., Чундун Л., Шиюй Х. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2011. № 12. С. 29–39.
  12. Mikhailov M.M., Neshchimenko V.V., Chundong L. // Radiation Effects and Defects in Solids. 2012. V. 167. № 1. P. 26–36. https://www.doi.org/10.1080/10420150.2011.588231
  13. Mikhailov M.M., Neshchimenko V. V., Chundong L. // Dyes Pigments. 2016. V. 131. P. 256. https://www.doi.org/10.1016/j.dyepig.2016.04.012
  14. Tanji K., Mrabet I.E., Fahoul Y., Soussi A., Belghiti M., Jellal I., Naciri Y., Gaidoumi A.E., Kherbeche A. // Reaction Kinetics, Mechanisms and Catalysis. 2023. V. 136. P. 1125. https://www.doi.org/10.1007/s11144-023-02385-0
  15. Gupta D., Chauhan V., Koratkar N., Singh F., Ku- mar A., Kumar S., Kumar R. // Vacuum. 2021. V. 192. P. 110435. https://www.doi.org/10.1016/j.vacuum.2021.110435
  16. Косицын Л.Г., Михайлов М.М., Кузнецов Н.Я., Дворецкий М.И. // Приборы и техника эксперимента. 1985. № 4. С. 176.
  17. Johnson F.S. // J. Meteorological. 1954. V. 11. № 6. P.431.
  18. ASTM E490 – 00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. – 2019.
  19. ASTM E903 – 96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. – 2005.
  20. Burns D.A., Ciurczak E.W. Handbook of near-infrared analysis / CRC Press. 2001. P. 814. https://www.doi.org/10.1201/9781420007374
  21. Reyes-Coronado D., Rodríguez-Gattorno G., Espinosa-Pesqueira M.E., Cab C., de Coss R., Oskam G. // Nanotechnology. 2008. V. 19. P. 145605. https://www.doi.org/10.1088/0957-4484/19/14/145605
  22. Nourozi B., Aminian A., Fili N., Zangeneh Y., Boochani A., Darabi P. // Results Phys. 2019. V. 12. P. 2038. https://www.doi.org/10.1016/j.rinp.2019.02.054
  23. Roessler D.M., Walker W.C. // Phys/ Rev. 1996. V. 159. № 3. P. 733. https://www.doi.org/10.1103/physrev.159.733
  24. Achehboune M., Khenfouch M., Boukhoubza I., Leon-tie L., Doroftei C., Carlescu A., Bulai G., Mothudi B., Zorkani I., Jorio A. // Materials Today: Proc. 2022. V. 53. P. 319. https://www.doi.org/10.1016/j.matpr.2021.04.144
  25. Ahmad F., Maqsood A. // Mater. Sci. Engineer.: B. 2021. V. 273. P. 115431. https://www.doi.org/10.1016/j.mseb.2021.115431,
  26. Inamuddin, Shakeel N., Ahamed M.I., Kanchi S., Kashmery H.A. // Sci. Rep. 2020. V. 10. P. 5052. https://www.doi.org/10.1038/s41598-020-61831-4
  27. Sagar Raut D.P., Thorat R.T. // Int. J. Sci. Res. 2015. V. 4. P. 1225.
  28. Buchholz M., Yu X., Yang C., Heißler S., Nefedov A., Wang Y., Wöll C. // Surf. Sci. 2016. V. 652. P. 247. https://www.doi.org/10.1016/j.susc.2015.12.029
  29. Fan Y., Zheng W., Zhu S., Cheng L., Qi H., Li L., Huang F. // J. Luminescence. 2021. V. 239. P. 118365. https://www.doi.org/10.1016/j.jlumin.2021.118365
  30. Jawwad M.A.S., Murti R.H.A., Ya-Fen Wang, You S.-J. // Nusantara Sci. Technol. Proc. 2020. P. 72. https://www.doi.org/10.11594/nstp.2020.0510
  31. Stomp M., Huisman J., Stal L.J., Matthijs H.C.P. // ISME J. 2007. V. 1. P. 271. https://www.doi.org/10.1038/ismej.2007.59.
  32. Polovka M., Polovková J., Vizárová K., Kirschnerová S., Bieliková L., Vrška M. // Vibrational Spectroscopy. 2006. V. 41. P. 112. https://www.doi.org/10.1016/j.vibspec.2006.01.010.
  33. Neshchimenko V., Li C., Mikhailov M., Lv J. // Nanoscale. 2018. V. 10. P. 22335. https://www.doi.org/10.1039/C8NR04455D
  34. Шалимова К.В. Физика полупроводников. М.: Энергия. 1976. С. 416.
  35. Skvortsova V., Trinkler L. The Optical Properties of Magnesium Oxide Containing Transition Metal Ions and Defects Produced by Fast Neutron Irradiation // 3rd WSEAS International Conference on Sensors and Signals, SENSIG'10, 3rd WSEAS International Conference on Materials Science, MATERIALS′10. University of Algarve, Faro, Portugal, November 3-5, 2010. P. 150.
  36. Kappers L.A., Kroes R.L., Hensley E.B. // Phys. Rev. B. 1970. V. 1. P. 4151.
  37. Schirmer O.F. // Z. Physik B. 1976. B. 24. S. 235. https://www.doi.org/10.1007/BF01360892
  38. Zhang X., Hattar K., Chen Y., Shao L., Li J., Sun C., Yu K., Li N., Taheri M.L., Wang H., Wang J., Nastasi M. // Prog. Mater. Sci. 2018. V. 96. P. 217. https://www.doi.org/10.1016/j.pmatsci.2018.03.002
  39. Andrievski R.A. // Rev. Adv. Mater. Sci. 2011. V. 29. P. 54.

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##