Calorimetric and Volumetric Studies of Dislocations During Martensitic Transformations in Shape Memory TiNi Alloy

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on the use of appropriate approaches, methods and results of the analysis of a number of topical problems of physical materials science, an in-depth analysis has been done of calorimetric and volumetric data for direct, reverse and deformation martensitic transformations in a nanostructured Ti49.3Ni50.7 shape memory alloy obtained by cold rolling with simultaneous action of pulsed high-density current. For the first time, by applying a new technique for processing calorimetric spectra (peaks), the staging and “kinetics” of changes in heat content, as well as thermal effects (enthalpies of individual stages) during direct and reverse martensitic transformations during cooling or heating of samples at a constant rate (3 × K/ min) in the range 170–370 K has been done. It is shown, by processing volumetric data, using theoretical values of the dislocation density and elements of the classical theory of dislocations, that in the Ti49.3Ni50.7 shape memory alloy subjected to cold deformation accompanied by the action of a pulsed current, a deformation martensitic transformation occurs, leading to a positive volume effect (∆V/V) ≈ 3 × 10–3), which can be largely due to dislocations. It is shown, by applying the theoretical values of the dislocation density and elements of the classical theory of dislocations, that the possible contributions of dislocations to the enthalpies of direct and reverse martensitic transformations (in the Ti49.3Ni50.7 alloy) can and should be significantly lower in absolute value, but opposite in sign to the observed enthalpies of direct and reverse martensitic transformation in a given alloy. It is shown that the physics of the processes under consideration is contained to a certain extent in scientific discoveries No. 239 “The phenomenon of thermoelastic equilibrium during phase transformations of the martensitic type – the Kurdyumov effect” and No. 339 “The phenomenon of the formation of non-equilibrium grain boundaries in polycrystals when they absorb lattice dislocations”.

作者简介

Yu. Nechaev

Scientific Center of Metals Science and Physics, I.P. Bardin Central Research Institute for Ferrous Metallurgy

编辑信件的主要联系方式.
Email: yuri1939@inbox.ru
俄罗斯联邦, Moscow

E. Denisov

Physics Department, St. Petersburg State University

Email: yuri1939@inbox.ru
俄罗斯联邦, St. Petersburg

N. Shurygina

Scientific Center of Metals Science and Physics, I.P. Bardin Central Research Institute for Ferrous Metallurgy

Email: yuri1939@inbox.ru
俄罗斯联邦, Moscow

S. Sineva

Physics Department, St. Petersburg Polytechnical University

Email: yuri1939@inbox.ru
俄罗斯联邦, St. Petersburg

A. Misochenko

Blagonravov Mechanical Engineering Research Institute of RAS

Email: yuri1939@inbox.ru
俄罗斯联邦, Moscow

V. Stolyarov

Blagonravov Mechanical Engineering Research Institute of RAS

Email: yuri1939@inbox.ru
俄罗斯联邦, Moscow

参考

  1. Курдюмов Г.В., Утевский Л.М., Энтин Р.И. Превращения в железе и стали. М.: Наука, 1977. 240 с.
  2. Этерашвили Т.В., Утевский Л.М., Спасский М.Н. // ФММ. 1979. Т. 49. С. 807.
  3. Родионов Д.П., Счастливцев В.М. Стальные монокристаллы. Екатеринбург: УрО РАН, 1996. 275 с.
  4. Кащенко М.П., Кащенко Н.М., Чащина В.Г. // ФТТ. 2019. Т. 61. Вып. 12. С. 2274. https://doi.org/10.21883/FTT.2019.12.48532.04ks
  5. Кащенко М.П. Волновая модель роста мартенсита при γ—α превращении в сплавах на основе железа. Изд. 2-е. М.−Ижевск: НИЦ “Регулярная и хаотическая динамика”. Ижевский институт компьютерных исследований, 2010. 280 с.
  6. Кащенко М.П., Чащина В.Г. Динамическая модель формирования двойникованных мартенситных кристаллов при γ−α превращении в сплавах на основе железа. Екатеринбург: Урал. гос. лесотехн. ун-т, 2009. 98 с.
  7. Нечаев Ю.С. // УФН. 2008. Т. 178. № 7. С. 709. https://doi.org/10.3367/UFNr.0178.200807b.0709
  8. Нечаев Ю.С. // УФН. 2011. Т. 181. № 5. С. 483. https://doi.org/10.3367/UFNr.0181.201105b.0483
  9. Wild J., Cerezo A., Smith G.D.W. // Scripta Mater. 2000. V. 43. P. 39. https://www.doi.org/10.1016/S1359-6462(00)00361-4
  10. Misochenko A.A., Kumar J.V.T., Jayaprakasam S., Padmanabhan K.A., Stolyarov V.V. // Defect and Diffusion Forum. 2018. V. 385. P. 169. https://doi.org/10.4028/www.scientific.net/DDF.385.169
  11. Потапова А.А. (Мисоченко А.А.). Структура и свойства конструкционных сплавов на основе TiNi, подвергнутых прокатке с импульсным током. Дис. канд. технических наук: 05.16.09. Москва, МГУ, 2014. 141 с.
  12. Фридель Ж. Дислокации. М.: Мир, 1967. 660 с.
  13. Хирт Дж., Лоте И. Теория дислокаций. М.: Атом- издат, 1972. 600 c.
  14. Nechaev Yu.S., Alexandrova N.M., Cheretaeva A.O., Kuznetsov V.L., Öchsner A., Kostikova E.K., Zai- ka Yu.V. // Int. J. Hydrogen Energy. 2020. V. 45. № 46. P. 25030. https://www.doi.org/10.1016/j.ijhydene. 2020.06.242
  15. Нечаев Ю.С., Александрова Н.М., Шурыгина Н.А., Черетаева А.О., Денисов Е.А., Костикова Е.К. // Известия РАН. Серия Физическая. 2021. Т. 85. № 7. С. 918. https://www.doi.org/10.31857/S0367676521070164
  16. Научное открытие 239 (СССР). Явление термоупругого равновесия при фазовых превращениях мартенситного типа – эффект Курдюмова. / Курдюмов Г.В., Хандрос Л.Г. // Б.О.И. 1980.
  17. Научное открытие 339 (СССР). Явление образования в поликристаллах неравновесных границ зерен при поглощении ими решеточных дислокаций. / Кайбышев О.А., Валиев Р.З. // Б.О.И. 1987. № 7.
  18. Nechaev Yu.S. // Defect and Diffusion Forum. 2018. V. 385. P. 120.
  19. Sundeev R.V., Shalimova A.V., Glezer A.M., Nosova G.I., Gorshenkov M.V., Pechina E.A. Glezer A.A. // Mater. Sci. Eng. A. 2017. V. 679. P. 1.
  20. Divinski S.V., Reglitz G., Rösner H., Wilde G., Estrin Y. // Acta Materialia. 2011. V. 59. Iss. 5. P. 1974.
  21. Валиев Р.З., Кайбышев О.А. // Доклады АН СССР. 1980. Т. 239. С. 91.
  22. Валиев Р.З., Кайбышев О.А. // Доклады АН СССР. 1977. Т. 236. № 2. С. 339.
  23. Zhang Q., Song W.P., Li X.H., Stolyarov V.V., Zhang X.Y. // Mater. Sci. Technol. 2016. V. 32. P. 1200. https://www.doi.org/10.1080/02670836.2015.1114206
  24. Гюнтер В.Э., Матюнин А.Н., Монасевич Л.А. // ИПФ. 1993. № 1. С. 42.
  25. Егоров С.А., Волков А.Е. // Журнал технической физики. 2017. Т. 87. В. 2. С. 204.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Approximation by Gaussians (methodology [14, 15]) of calorimetric spectra (peaks) from [10, Fig. 4]. The number of the Gaussians in the figure corresponds to the number in Table 1, "Σ" is the sum of Gaussians (gray dashed line), "Exp." - experimental curve (solid black curve)

下载 (568KB)
3. Fig. 2. Approximation by Gaussians (methodology [14, 15]) of calorimetric spectra (peaks) from [10, Fig. 5]. The number of Gaussians in the figure corresponds to the number in Table 1, "Σ" - sum of Gaussians (gray dashed line); "Exp." - experimental curve (solid black curve)

下载 (820KB)
4. Fig. 3. Determination (from Figs. 1a, 1c, 2a, 2c) of kinetic curves (methodology [14, 15]) of heat content change in Ti49.3Ni50.7 shape memory alloy during forward and reverse martensitic transformations during cooling or heating at a constant rate (3 K/min) in the range of 170-370 K. "Exp." - experimental curve (gray solid line), "Gaussian" - result of Gaussian processing (black solid line)

下载 (933KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##