Defects in h-BN: computer simulation of size effects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of size effects on the properties of a hexagonal boron nitride (h-BN) monolayer containing CBVN, NBVN, and OBOBVN defects has been studied by first principles methods. These defects are potentially capable of generating single photons in quantum optics and quantum information devices. Size effects here mean the dependence of the studied model properties on the simulated fragment size of the 2D structure under periodic boundary conditions. Physically, this means that the properties of a monolayer depend on the distance between defects. This dependence allows us to judge how strongly the defects interact with each other and whether they interact at all. For technical applications, the characteristics of the band structure (band gap, spectrum and density of electron states induced by the defect in the band gap) and the atomic structure of the defect (defect formation energy, geometry in the equilibrium configuration), which form this band pattern, are important. In this work, these properties are studied by using the density functional theory with the basis of atom-like functions (SIESTA package) and plane waves (VASP package). The results obtained using both packages are consistent with each other. It has been established that the defects can be considered non-interacting, when the distance between them is ten unit cell parameters.

作者简介

R. Latypov

South Ural State University (national research university)

编辑信件的主要联系方式.
Email: latypovrm@susu.ru

Laboratory of Quantum Engineering of Light

俄罗斯联邦, 454080, Chelyabinsk

S. Sozykin

South Ural State University (national research university)

Email: latypovrm@susu.ru

Physics of Nanoscale Systems Department

俄罗斯联邦, 454080, Chelyabinsk

V. Beskachko

South Ural State University (national research university)

Email: latypovrm@susu.ru

Laboratory of Quantum Engineering of Light

俄罗斯联邦, 454080, Chelyabinsk

参考

  1. Koperski M., Nogajewski, K., Arora A., Cherkez V., Mallet P., Veuillen J.Y., Potemski M. // Nat. Nanotech. 2015. V. 10. № 6. P. 503. https://doi.org./10.1038/nnano.2015.67
  2. Srivastava A., Sidler M., Allain A.V., Lembke D.S., Kis A., Imamoğlu A. // Nat. Nanotech. 2015. V. 10. № 6. P. 491. https://doi.org./10.1038/nnano.2015.60
  3. Tran T.T., Bray K., Ford M.J., Toth M., Aharonovich I. // Nat. Nanotech. 2016. V. 11. № 1. P. 37. https://doi.org./10.1038/nnano.2015.242
  4. Wang G., Chernikov A., Glazov M.M., Heinz T.F., Marie X., Amand T., Urbaszek B. // Rev. Mod. Phys. 2018. V. 90. № 2. P. 021001. https://doi.org./10.1103/RevModPhys.90.021001
  5. Luo Y., Shepard G.D., Ardelean J.V., Rhodes D.A., Kim B., Barmak K., Strauf S. // Nat. Nanotech. 2018. V. 13. № 12. P. 1137. https://doi.org./10.1038/s41565-018-0275-z
  6. Flatten L.C., Weng L., Branny A., Johnson S., Dolan P.R., Trichet A.A.P., Smith J.M. // Appl. Phys. Lett. 2018. V. 112. № 19. P. 191105. https://doi.org./10.1063/1.5026779
  7. White D., Branny A., Chapman R.J., Picard R., Brotons-Gisbert M., Boes A., Gerardot B.D. // Opt. Mat. Exp. 2019. V. 9. № 2. P. 441. https://doi.org./10.1364/OME.9.000441
  8. Kim S., Duong N.M.H., Nguyen M., Lu, T.J., Kiani- nia M., Mendelson N., Aharonovich I. // Adv. Opt. Mat. V. 7. № 23. P. 1901132. https://doi.org./10.1002/adom.201901132
  9. Turunen M., Brotons-Gisbert M., Dai Y., Wang Y., Scerri E., Bonato C., Jöns D.K., Sun Z., Gerardot B.D. // Nat. Rev. Phys. 2022. V. 4. № 4. P. 219. https://doi.org./10.1038/s42254-021-00408-0
  10. Cassabois G., Valvin P., Gil B. // Nat. Photonics. 2016. V. 10. № 4. P. 262. https://doi.org./10.1038/nphoton.2015.277
  11. Watanabe K., Taniguchi T., Kanda H. // Nat. Mater. 2004. V. 3. № 6. P. 404. https://doi.org./10.1038/nmat1134
  12. Exarhos A.L., Hopper D.A., Grote R.R., Alkauskas A., Bassett L.C. // ACS Nano. 2017. V. 11. № 3. P. 3328. https://doi.org./10.1021/acsnano.7b00665
  13. Chejanovsky N., Rezai M., Paolucci F., Kim Y., Rend-ler T., Rouabeh W., Wrachtrup J. // Nano Lett. 2016. V. 16. № 11. P. 7037. https://doi.org./10.1021/acs.nanolett.6b03268
  14. Jungwirth N.R., Fuchs G.D. // Phys. Rev. Lett. 2017. V. 119 № 5. P. 057401. https://doi.org./10.1103/PhysRevLett.119.057401
  15. Weston L. Wickramaratne D., Mackoit M., Alkaus- kas A., Van de Walle C.G. // Phys. Rev. B. 2018. V. 97. № 21. P. 214104.
  16. doi: 10.1103/PhysRevB.97.214104
  17. Abdi M., Chou J.P., Gali A., Plenio M.B. // ACS Phot. 2018. V. 5. № 5. P. 1967. https://doi.org./10.1021/acsphotonics.7b01442
  18. Jara C., Rauch T., Botti, S., Marques M.A., Norambue-na A., Coto R., Munoz F. // J. Phys. Chem. A. 2021. V. 125. № 6. P. 1325. https://doi.org./10.1021/acs.jpca.0c07339
  19. Cheng G.D., Zhang Y.G., Yan L., Huang H.F., Huang Q., Song Y.X., Tang Z. // Comput. Mater. Sci. 2017. V. 129. P. 247. https://doi.org./10.1016/j.commatsci.2016.12.032
  20. Huang P., Grzeszczyk M., Vaklinova K., Watanabe K., Taniguchi T., Novoselov K. S., Koperski M. // Phys. Rev. B. 2022 V. 106. № 1. P. 014107. https://doi.org./10.1103/PhysRevB.106.014107
  21. Mackoit-Sinkevičienė M., Maciaszek M., Van de Wal-le C.G., Alkauskas A. // Appl. Phys. Lett. 2019. V. 115. № 21. P. 212101. https://doi.org./10.1063/1.5124153
  22. Ahmadpour Monazam M.R., Ludacka U., Komsa H.P., Kotakoski J. // App. Phys. Lett. 2019. V. 115. № 7. P. 071604. https://doi.org./10.1063/1.5112375
  23. Tawfik S.A., Ali S., Fronzi M., Kianinia M., Trong T., Stampfl C., Aharonovich I., Toth M., Ford M.J. // Nanoscale. 2017. V. 9. № 36. P. 13575. https://doi.org./10.1039/C7NR04270A
  24. Philbin J.P., Narang P. // PRX Quantum. 2021. V. 2. № 3. P. 030102. https://doi.org./10.1103/PRXQuantum.2.030102
  25. Soler J.M., Artacho E., Gale J.D., García A., Junque- ra J., Ordejón P., Sánchez-Portal D. // J. Phys.: Cond. Matter. 2002. V. 14. № 11. P. 2745. https://doi.org./10.1088/0953-8984/14/11/302
  26. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org./10.1103/PhysRevB.54.11169
  27. Sozykin S.A. // Comput. Phys. Commun. 2021. V. 262. P. 107843. https://doi.org./10.1016/j.cpc.2021.107843
  28. Morales-García Á., Valero R., Illas F. // J. Phys. Chem. C. 2017. V. 121. № 34. P. 18862. https://doi.org./10.1021/acs.jpcc.7b07421

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Equilibrium variants of the geometry of the studied defects.

下载 (275KB)
3. Fig. 2. Zone structures of the unit cell h-BN (a) and CBN at different model sizes: 3 × 3 (b); 4 × 4 (c); 6 × 6 (d). Spin up, SIESTA. The energy is measured from the Fermi level.

下载 (471KB)
4. Рис. 3. Зависимость энергии образования дефекта CBVN (а), NBVN (б) и OBOBVN (в) от количества атомов в модели: кружками отмечены результаты SIESTA, треугольниками – VASP.

下载 (359KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##