Visualization of structural domains in a single crystal of iron pnictide EuFe2As2

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that during the synthesis of superconducting EuRbFe4As4 single crystals, inclusions of its parent EuFe2As2 phase are encountered. The kinetics of the formation of the orthorhombic phase in EuRbFe4As4 crystals containing a large fraction of the EuFe2As2 phase has been studied using polarization optical microscopy. It is shown that the orthorhombic phase grows into the tetragonal one in stripes with the same crystallographic orientation, forming macro-domains. Then these domains abruptly penetrate parallel stripes of the orthorhombic phase of the second orientation, and a twin system of orthorhombic domains is formed. The process is accompanied by the appearance of macrostresses: stretching and compression waves with a characteristic period of 100–300 μm along and across the twin system, leading to spatial modulation of magnetic permeability. It has been found that even weak magnetic fields (up to 100 Oe) significantly affect the spatial distribution of the twin structure and have an effect similar to external stresses.

作者简介

L. Uspenskaya

Osipyan Institute of Solid State Physics RAS

编辑信件的主要联系方式.
Email: uspenska@issp.ac.ru
俄罗斯联邦, 142432, Chernogolovka

M. Sidelnikov

Osipyan Institute of Solid State Physics RAS

Email: uspenska@issp.ac.ru
俄罗斯联邦, 142432, Chernogolovka

K. Pervakov

Lebedev Physical Institute RAS

Email: uspenska@issp.ac.ru
俄罗斯联邦, 119991, Moscow

V. Vlasenko

Lebedev Physical Institute RAS

Email: uspenska@issp.ac.ru
俄罗斯联邦, 119991, Moscow

L. Vinnikov

Osipyan Institute of Solid State Physics RAS

Email: vinnik@issp.ac.ru
俄罗斯联邦, 142432, Chernogolovka

参考

  1. Miclea C.F., Nicklas M., Jeevan H.S., Kasinathan D., Hossain Z., Rosner H., Gegenwart P., Geibel C., Steg-lich F. // Phys. Rev. B. 2009. V. 79. № 21. P. 212509. http://doi.org./10.1103/PhysRevB.79.212509
  2. Изюмов Ю.А., Курмаев Э.З. // УФН. 2008. Т. 178. № 12. С. 1307. http://doi.org./10.3367/UFNr.0178.200812d.1307
  3. Nandi S., Jin W.T., Xiao Y., Su Y., Price S., Shukla D.K., Strempfer J., Jeevan H.S., Gegenwart P., Brückel Th. // Phys. Rev. B. 2014. V. 89. № 1. P. 014512. http://doi.org./10.1103/PhysRevB.89.014512
  4. Degtyarenko A.Yu., Karateev I.A., Ovcharov A.V., Vlasenko V.A., Pervakov K.S. // Nanomaterials. 2022. V. 12. № 21. P. 3801. http://doi.org./10.3390/nano12213801
  5. Vlasenko V., Pervakov K., Gavrilkin S. // Supercond. Sci. Technol. 2020. V. 33. № 8. P. 084009. http://doi.org./10.1088/1361-6668/ab9aa5
  6. Kim T.K., Pervakov K.S., Evtushinsky D.V., Jung S.W., Poelchen G., Kummer K., Vlasenko V.A., Sadakov A.V., Usoltsev A.S., Pudalov V.M., Roditchev D., Stolyarov V.S., Vyalikh D.V., Borisov V., Valentí R., Ernst A., Ereme- ev S.V., Chulkov E.V. // Phys. Rev. B. 2021. V. 103. № 17. P. 174517. http://doi.org./10.1103/PhysRevB.103.174517
  7. De la Cruz C., Huang Q., Lynn J.W., Li J., Ratcliff II W., Zarestky J.L., Mook H.A., Chen G.F., Luo J.L., Wang N.L., Dai P. // Nature. 2008. V. 453. № 7197. P. 899. http://doi.org./10.1038/nature07057
  8. Tanatar M.A., Kreyssig A., Nandy S., Ni N., Budko S.L., Canfield P.C., Goldman A.I., Prozorov R. // Phys. Rev. B. 2009. V. 79. № 18. P. 180508. http://doi.org./10.1103/PhysRevB.79.180508
  9. Ni N., Nandi S., Kreyssig A., Goldman A.I., Mun E.D., Bud’ko S.L., Canfield P.C. // Phys. Rev. B. 2008. V. 78. № 1. P. 014523. http://doi.org./10.1103/PhysRevB.78.014523
  10. Goldman A.I., Argyriou D.N., Ouladdiaf B., Chatte- rji T., Kreyssig A., Nandi S., Ni N., Bud’ko S.L., Can- field P.C., McQueeney R.J. // Phys. Rev. B. 2008. V. 78. № 10. P. 100506. http://doi.org./10.1103/PhysRevB.78.100506
  11. Zapf S., Dressel M. // Rep. Prog. Phys. 2017. V. 80. № 1. P. 016501. http://doi.org./10.1088/0034-4885/80/1/016501
  12. Veshchunov I.S., Vinnikov L.Ya., Stolyarov V.S., Zhou N., Shi Z.X., Xu X.F., Grebenchuk S.Yu., Baranov D.S., Golovchanskiy I.A., Pyon S., Sun Y., Jiao W., Cao G., Tamegai T., Golubov A.A. // JETP Lett. 2017. V. 105. № 2. P. 98. http://doi.org./10.1134/S0021364017020151
  13. Vinnikov L.Ya., Veshchunov I.S., Sidelnikov M.S., Stolyarov V.S. // Instrum. Exp. Tech. 2019. V. 62. № 4. P. 587. http://doi.org./10.1134/S0020441219040122
  14. Tegel M., Rotter M., Weiß V., Schappacher F.M., Pött-gen R., Johrendt D. // J. Phys. Condens. Matter. 2008. V. 20. № 45. P. 452201. http://doi.org./10.1088/0953-8984/20/45/452201
  15. Xiao Y., Su Y., Schmidt W., Schmalzl K., Kumar C.M.N., Price S., Chatterji T., Mittal R., Chang L.J., Nandi S., Kumar N., Dhar S.K., Thamizhavel A., Brueckel Th. // Phys. Rev. B. 2010. V. 81. № 22. P. 220406. http://doi.org./10.1103/PhysRevB.81.220406
  16. Zapf S., Stingl C., Post K.W., Maiwald J., Bach N., Pietsch I., Neubauer D., Löhle A., Clauss C., Jiang S., Jeevan H.S., Basov D.N., Gegenwart P., Dressel M. // Phys. Rev. Lett. 2014. V. 113. № 22. P. 227001. http://doi.org./10.1103/PhysRevLett.113.227001
  17. Ельцев Ю.Ф., Перваков К.С., Власенко В.А., Гаврилкин С.Ю., Хлыбов Е.П., Пудалов В.М. // УФН. 2014. Т. 184. № 8. С. 897. http://doi.org./10.3367/UFNr.0184.201408j.0897
  18. Батова Д.Е., Власко-Власов В.К., Гончаров В.А., Емельченко Г.Е., Инденбом М.В., Осипьян Ю.А. // ЖЭТФ. 1988. Т. 94. Вып. 11. С. 356.
  19. Uspenskaya L.S., Tikhomirov O.A., Bozhko S.I., Ego-rov S.V., Chugunov A.A. // J. Appl. Phys. 2013. V. 113. № 16. P. 163907. http://doi.org./10.1063/1.4803051
  20. Мусаева З.Р., Выборнов Н.А., Булатов Н.А., Карпасюк В.К., Успенская Л.С., Язенков С.Х. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2007. № 7. С. 66.
  21. Успенская Л.С., Нургалиев Т., Благоев Б., Дончев Т., Митева С. // Изв. РАН. Сер. Физ. 2008. Т. 72. № 4. С. 572.
  22. Mirri C., Dusza A., Bastelberger S., Chu J.-H., Kuo H.-H., Fisher I.R., Degiorgi. L. // Phys. Rev. B. 2014. V. 89. № 6. P. 060501. http://doi.org./10.1103/PhysRevB.89.060501
  23. Mirri C., Dusza A., Bastelberger S., Chu J.-H., Kuo H.-H., Fisher I.R., Degiorgi. L. // J. Supercond. Nov. Magn. 2016. V. 29. № 12. P. 3053. http://doi.org./10.1007/s10948-016-3773-y
  24. Pal A., Chinotti M., Chu J.-H., Kuo H.-H., Fisher I.R., Degiorgi L. // NPJ Quantum Materials. 2019. V. 4. № 1. P. 3. http://doi.org./10.1038/s41535-018-0140-1
  25. Смоленский Г.А., Боков В.А., Юсупов В.А., Край- ник Н.Н., Пасынков Р.Е., Шур М.С. Сегнетоэлектрики и антисегнетоэлектрики. Л.: Наука, 1971. 476 c.
  26. Классен-Неклюдова М.В. Механическое двойникование кристаллов. М.: Изд-во АН СССР, 1960. 261 c.
  27. Degiorgi L. // Front. Phys. 2022. V. 10. P. 866664. http://doi.org./10.3389/fphy.2022.866664

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Photographs of the surface of the EuFe2As2 single crystal obtained in reflected polarized light at 184.9 K and different orientations of the axes a and b (a, b) of the forming rhombic phase relative to the direction of polarization of the incident light: dark (1) and light (2) band contrasts, E – contour of the step on the plane where the transition takes place to the lower terrace of the surface.

下载 (461KB)
3. Fig. 2. Microdomains (A and B) of the bands of the forming rhombic phase at 184.7 K (a); the twin structure formed at 184.5 K, which practically persists with a further decrease in temperature (b).

下载 (499KB)
4. Fig. 3. The appearance of longitudinal and transverse brightness modulations of the image of the double structure of the rhombic phase (stresses) at a temperature of: a – 186.2; b – 33 K (contrast is changed to simultaneously visualize both the modulation and the double structure). It can be seen that the position of the twin boundaries is almost invariable over a wide temperature range.

下载 (512KB)
5. Fig. 4. The brightness profile measured in the transverse direction relative to the twin domains at 186.84 (1), 186.82 (2), 186.2 (3), 90.8 (4) and 14.7 K (5) (a); temperature dependence of the maximum (1) and minimum (2) brightness in the modulation bands, as well as the modulation amplitudes (3) (b).

下载 (459KB)
6. Fig. 5. The formation of a rhombic phase (white stripes) in one of the crystal regions at a temperature of: a – 186.84; b – 186.82 K (contrast transformation in the region of localization of the rhombic phase with simultaneous compression of the area occupied by this phase).

下载 (405KB)
7. Fig. 6. Transformation at T = 8 To macroscopic voltage modulation under the action of a magnetic field H = 50 E lying in the plane ab and applied at an angle of about 20 ° (a) and 70° (b) to the twin boundaries (the direction of the field is shown by black arrows, the direction of the crystallographic axes in the tetragonal phase is white arrows).

下载 (371KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##