Formation of Radiation Defects in Wide-Band Semiconductors Based on Gallium (Ga2O3, GaN) under Proton Irradiation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using mathematical modeling of the displacement cascade in two wide-gap semiconductors based on gallium, gallium oxide (Ga2O3) and gallium nitride (GaN), the features of the generation of Frenkel pairs during the scattering of protons with energies of 8 and 15 MeV are considered. The number of displacements created not only by primary knocked-on atoms, but also by recoil atoms generated in displacement cascades is calculated for the first time. Calculations have shown that under proton irradiation of Ga2O3, for example, the fraction of vacancies in the oxygen sublattice created directly by protons is only 12%. The remaining 88% are created by recoil atoms in cascade processes. For the gallium sublattice, these fractions are 25 and 75%, respectively. Therefore, the processes of compensating the conductivity of GaN and Ga2O3 observed under proton irradiation will be determined by deep centers created not by primary knocked-on atoms, but by recoil atoms formed in displacement cascades. A comparison with experimental data is made, and the fraction of Frenkel pairs dissociating during irradiation is estimated.

Sobre autores

V. Kozlovski

Peter the Great St. Petersburg Polytechnic University

Autor responsável pela correspondência
Email: kozlovski@physics.spbstu.ru
Russia, 195251, St. Petersburg

A. Vasil’ev

Peter the Great St. Petersburg Polytechnic University

Autor responsável pela correspondência
Email: electronych@mail.ru
Russia, 195251, St. Petersburg

A. Lebedev

Ioffe Institute

Autor responsável pela correspondência
Email: shura.lebe@mail.ioffe.ru
Russia, 194021, St. Petersburg

E. Zhurkin

Peter the Great St. Petersburg Polytechnic University

Autor responsável pela correspondência
Email: ezhurkin@phmf.spbstu.ru
Russia, 195251, St. Petersburg

M. Levinshtein

Ioffe Institute

Autor responsável pela correspondência
Email: melev@nimis.ioffe.ru
Russia, 194021, St. Petersburg

A. Strelchuk

Ioffe Institute

Autor responsável pela correspondência
Email: anatoly.strelchuk@mail.ioffe.ru
Russia, 194021, St. Petersburg

Bibliografia

  1. Kozlovski V., Abrosimova V. Radiation Defect Engineering. Selected Topics in Electronics and Systems V. 37. Singapore: World Scientific, 2005. 264 p.
  2. Claeys C., Simoen E. Radiation Effects in Advanced Semiconductor Materials and Devices. Berlin: Springer–Verlag, 2002. 401 p.
  3. Strokan N.B., Ivanov A.M., Savkina N.S. et al. // Semiconductors. 2004. V. 38. P. 807.
  4. Van Lint V.A.J. Mechanisms of Radiation Effects in Electronic Materials. John Wiley & Sons, 1980.
  5. Козловский В.В., Васильев А.Э., Лебедев А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 7. С. 19.
  6. Козловский В.В., Васильев А.Э., Карасев П.А., Лебедев А.А. // Физика и техника полупроводников. 2018. Т. 52. № 3. С. 327.
  7. SRIM-2013 Software Package. http://www.srim.org https://doi.org/10.1007/978-1-4615-8103-1_3
  8. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Matter. New York: Pergamon, 1985.
  9. Steeds J.W., Carosella F., Evans G.A. et al. // Mater. Sci. Forum. 2001. V. 353–356. P. 381.
  10. Steeds J.W., Evans G.A., Furkert S. et al. // Diamond Related Mater. 2002. V. 11. P. 1923.
  11. Lebedev A.A. Radiation Effects in Silicon Carbide // Materials Research Forum LLC, Millersville, USA, 2017. V. 6. PA 17551.
  12. Pons D., Bourgoin J.C. // J. Phys. C. 1985. V. 18. P. 3839.
  13. Barry A.L., Maxseiner R., Wojcik R. et al. // IEEE Trans. Nucl. Sci. 1990. V. 37. № 6. P. 1726.
  14. Look D.C., Reynolds D.C., Hemsky J.W. et al. // Phys. Rev. Lett. 1997. V. 79. P. 2273.
  15. Ionascut-Nedelcescu A., Carlone C., Houdayer A., von Bardeleben H.J., Cantin J.-L., Raymond S. // IEEE Trans. Nucl. Sci. 2002. V. 49. P. 2733.
  16. Emtsev V.V., Davydov V.Yu., Emtsev K.V., Poloskin D.S., Oganesyan G.A., Kozlovski V.V., Haller E.E. // Phys. Stat. Sol. C. 2003. № 2. P. 601.
  17. Pearton S.J., Ren F., Patrick E., Law M.E., Polyakov A.Y. // ECS J. Solid State Sci. Technol. 2016. V. 5. P. Q35.
  18. Bardeleben H.J., Zhou S., Gerstmann U. et al. // APL Mater. 2019. V. 7. P. 022521.
  19. Kim J., Pearton S.J., Fares C. et al. // J. Mater. Chem. C. 2019. V. 7. P. 10.
  20. Farzana E., Chaiken M.F., Blue T.E. et al. // APL Mater. 2019. V. 7. P. 022502.
  21. Лебедев А.А., Белов С.В., Мынбаева М.Г. и др. // Физика и техника полупроводников. 2015. Т. 49. Вып. 10. С. 1386.
  22. Lebedev A.A., Belov S.V., Mynbayeva M.G. et al. // Mater. Sci. Forum. 2016. V. 858. P. 1186.
  23. Yang J., Chen Z., Ren F. et al. // J. Vac. Sci. Technol. B. 2018. V. 36. № 1. P. 011206.
  24. Polyakov A.Y., Smirnov N.B., Shchemerov I.V. et al. // Appl. Phys. Lett. 2018. V. 113. P. 092102.
  25. Karmarkar A.P., White B.D., Buttari D., Fleetwood D.M., Schrimpf R.D., Weller R.A., Brillson L.J., Mishra U.K. // IEEE Trans. Nucl. Sci. 2005. V. 52. P. 2239.
  26. Auret F.D., Goodman S.A., Hayes M., Legodi M.J., Hullavarad S.S., Friedland E., Beaumont B., Gibart P. // Nucl. Instrum. Methods Phys. Res. B. 2001. V. 175–177. P. 292.
  27. Козловский В.В., Васильев А.Э., Емцев В.В., Оганесян Г.А., Лебедев А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 12. С. 20.
  28. Pearton S.J., Ren F., Mastro M. Gallium Oxide. Technology, Devices and Applications. Elsevier, 2019.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (91KB)
3.

Baixar (78KB)

Declaração de direitos autorais © В.В. Козловский, А.Э. Васильев, А.А. Лебедев, Е.Е. Журкин, М.Е. Левинштейн, А.М. Стрельчук, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies