Determining the Collimation Degree for a Coherent X-Ray Beam Using a Planar Multilens Interferometer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method is proposed for determining the degree of collimation of a coherent X-ray beam using a planar multilens interferometer. The method is based on analyzing Talbot images, which are periodic patterns of interference fringes formed by the interferometer at appropriate distances. The high sensitivity of the position and period of the interference fringes to the shape of the X-ray beam wave front makes it possible to determine the degree of its collimation, as well as to evaluate the coherent properties of the radiation. The effectiveness of the proposed approach has been experimentally demonstrated at the ID15B beamline of the ESRF synchrotron radiation source. A theoretical study has been carried out, and the corresponding results of computer simulation have been presented. The experimentally data obtained fully correspond to the theoretical estimates.

Sobre autores

D. Zverev

Immanuel Kant Baltic Federal University

Autor responsável pela correspondência
Email: daswazed@gmail.com
Russia, 236041, Kaliningrad

V. Yunkin

Institute of Microelectronics Technology RAS

Email: daswazed@gmail.com
Russia, 142432, Chernogolovka

S. Kuznetsov

Institute of Microelectronics Technology RAS

Email: daswazed@gmail.com
Russia, 142432, Chernogolovka

A. Barannikov

Immanuel Kant Baltic Federal University

Email: daswazed@gmail.com
Russia, 236041, Kaliningrad

M. Sorokovikov

Immanuel Kant Baltic Federal University

Email: daswazed@gmail.com
Russia, 236041, Kaliningrad

M. Voevodina

Immanuel Kant Baltic Federal University

Email: daswazed@gmail.com
Russia, 236041, Kaliningrad

A. Snigirev

Immanuel Kant Baltic Federal University

Email: daswazed@gmail.com
Russia, 236041, Kaliningrad

Bibliografia

  1. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org/10.1038/384049a0
  2. Snigireva I., Polikarpov M., Snigirev A. // Synchrotron Radiat. News. 2022. V. 34. № 6. P. 12. https://doi.org/10.1080/08940886.2021.2022387
  3. Snigirev A. // Synchrotron Free Electron Laser Radiat. Gener. Appl. (SFR-2022). Novosibirsk, June 27–30, 2022. P. 120. https://indico.inp.nsk.su/event/61/attachments/1533/2171/SFR-22Bookofabstracts.8.06.pdf# page=122 (accessed 16 September 2022)
  4. Vaughan G.B.M., Wright J.P., Bytchkov A., Rossat M., Gleyzolle H., Snigireva I., Snigirev A. // J. Synchrotron Radiat. 2011. V. 18. № Pt 2. P. 125. https://doi.org/10.1107/S0909049510044365
  5. Moosmann J., Ershov A., Altapova V., Baumbach T., Prasad M.S., Labonne C., Xiao X., Kashef J., Hofmann R. // Nature. 2013. V. 497. № 7449. P. 374. https://doi.org/10.1038/nature12116
  6. Otten A., Köster S., Struth B., Snigirev A., Pfohl T. // J. Synchrotron Radiat. 2005. V. 12. № 6. P. 745. https://doi.org/10.1107/S0909049505013580
  7. Roth T., Detlefs C., Snigireva I., Snigirev A. // Opt. Commun. 2015. V. 340 P. 33. https://doi.org/10.1016/j.optcom.2014.11.094
  8. Snigirev A., Snigireva I., Kohn V., Kuznetsov S., Schelokov I. // Rev. Sci. Instrum. 1995. V. 66. № 12. P. 5486. https://doi.org/10.1063/1.1146073
  9. Zverev D., Barannikov A., Snigireva I., Snigirev A. // Opt. Express. 2017. V. 25. № 23. P. 28469. https://doi.org/10.1364/oe.25.028469
  10. Bonse U., Hart M. // Appl. Phys. Lett. 1965. V. 6. № 8. P. 155. http://doi.org/https://doi.org/10.1063/1.1754212
  11. Leitenberger W., Kuznetsov S.M., Snigirev A. // Opt. Commun. 2001. V. 191. № 1–2. P. 91. https://doi.org/10.1016/S0030-4018(01)01104-X
  12. Paterson D., Allman B.E., McMahon P.J., Lin J., Moldovan N., Nugent K.A., McNulty I., Chantler C.T., Retsch C.C., Irving T.H.K., Mancini D.C. // Opt. Commun. 2001. V. 195. № 1–4. P. 79. https://doi.org/10.1016/S0030-4018(01)01276-7
  13. Leitenberger W., Wendrock H., Bischoff L., Weitkamp T. // J. Synchrotron Radiat. 2004. V. 11. № 2. P. 190. https://doi.org/10.1107/S0909049503029169
  14. Lyubomirskiy M., Snigireva I., Snigirev A. // Opt. Express. 2016. V. 24. № 12. P. 13679. https://doi.org/10.1364/oe.24.013679
  15. David C., Nöhammer B., Solak H.H., Ziegler E. // Appl. Phys. Lett. 2002. V. 81. № 17. P. 3287. https://doi.org/10.1063/1.1516611
  16. Momose A., Kawamoto S., Koyama I., Hamaishi Y., Takai, K., Suzuki Y. // Jpn. J. Appl. Phys. 2003. V. 42. № 7B. P. L866. https://doi.org/10.1143/jjap.42
  17. Pfeiffer F., Kottler C., Bunk O., David C. // Phys. Rev. Lett. 2007. V. 98. № 10. P. 1. https://doi.org/10.1103/PhysRevLett.98.108105
  18. Snigirev A., Snigireva I., Kohn V., Yunkin V., Kuznetsov S., Grigoriev M.B., Roth T., Vaughan G., Detlefs C. // Phys. Rev. Lett. 2009. V. 103. № 6. P. 064801. https://doi.org/10.1103/PhysRevLett.103.064801
  19. Zverev D., Snigireva I., Kohn V., Kuznetsov S., Yunkin V., Snigirev A. // Opt. Express. 2020. V. 28. № 15. P. 21856. https://doi.org/10.1364/oe.389940
  20. Sorokovikov M., Zverev D., Yunkin V., Kuznetsov S., Snigireva I., Snigirev A., Sorokovikov M. // Proc. SPIE. V. 11839. № 8. P. 48. https://doi.org/10.1117/12.2595017
  21. Lyubomirskiy M., Snigireva I., Kohn V., Kuznetsov S., Yunkin V., Vaughan G., Snigirev A. // J. Synchrotron Radiat. 2016. V. 23. P. 1104. https://doi.org/10.1107/S160057751601153X
  22. Snigirev A., Snigireva I., Lyubomirskiy M., Kohn V., Yunkin V., Kuznetsov S. // Opt. Express. 2014. V. 22. № 21. P. 25842. https://doi.org/10.1364/oe.22.025842
  23. Dilmanian F.A., Zhong Z., Ren B., Wu X.Y., Chapman L.D., Orion I., Thomlinson W.C. // Phys. Med. Biol. 2000. V. 45. № 4. P. 933. https://doi.org/10.1088/0031-9155/45/4/309
  24. Svatos J., Polack F., Joyeux D., Phalippou D. // Opt. Lett. 1993. V. 18. № 16. P. 1367. https://doi.org/10.1364/ol.18.001367
  25. Momose A., Yashiro W., Maikusa H., Takeda Y. // Opt. Express. 2009. V. 17. № 15. P. 12540. https://doi.org/10.1364/oe.17.012540
  26. Momose A., Takeda T., Itai Y., Hira K. // Nat. Med. 1996. V. 2. № 4. P. 473. https://doi.org/10.1063/1.1145931
  27. Zverev D., Snigireva I., Sorokovikov M., Kuznetsov S., Yunkin V., Snigirev A. // Opt. Express. 2021. V. 29. № 22. P. 35038. https://doi.org/10.1364/OE.434656
  28. Narikovich A., Polikarpov M., Barannikov A., Klimova N., Lushnikov A., Lyatun I., Bourenkov G., Zverev D., Panormov I., Sinitsyn A., Snigireva I., Snigirev A. // J. Synchrotron Radiat. 2019. V. 26. № 4. P. 1208. https://doi.org/10.1107/S1600577519005708
  29. Snigirev A., Snigireva I., Vaughan G., Wright J., Rossat M., Bytchkov A., Curfs C. // J. Phys. Conf. Ser. 2009. V. 186. № 1. P. 12073. https://doi.org/10.1088/1742-6596/186/1/012073
  30. Chumakov A.I., Rüffer R., Leupold O., Barla A., Thiess H., Asthalter T., Doyle B.P., Snigirev A., Baron A.Q.R. // Appl. Phys. Lett. 2000. V. 77. № 1. P. 31. https://doi.org/10.1063/1.126867
  31. Kohn V.G. // J. Synchrotron Radiat. 2017. V. 24. № 3. P. 609. https://doi.org/10.1107/S1600577517005318

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (453KB)
4.

Baixar (422KB)

Declaração de direitos autorais © Д.А. Зверев, В.А. Юнкин, С.М. Кузнецов, А.А. Баранников, М.Н. Сороковиков, М.А. Воеводина, А.А. Снигирев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies