Fracture-Resistant Zirconia-Based Composite Ceramics with Increased Surface Layer Hardness

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A two-layer alumina toughened zirconia composite ceramic stabilized with calcium oxide (Ca-ATZ) was produced using a relatively economical powder metallurgy method. One of the layers contains silica additive (Ca-ATZ + SiO2). The structure, elemental and phase composition as well as the complex of mechanical properties nearby of the Ca-ATZ/Ca-ATZ + SiO2 interface has been investigated. It was shown that the presence of a sharp interface of layers with different elemental composition did not cause structural disorders (appearance of pores, cracks and other macroscopic defects that contribute to the deterioration of strength properties) or changes in the phase composition (more than 90% of zirconia in both layers was in the tetragonal phase, which provided a high role of the transformation toughening mechanism). Demonstrated preservation of structural integrity and ratio of monoclinic, tetragonal and cubic zirconia phases at formation of sharp interface of the mentioned layers, provides possibility of manufacturing of zirconia-based ceramics with thin (100–200 μm) modified layer. Taking into account the difference in mechanical properties of Ca-ATZ and Ca-ATZ + SiO2 ceramics, this provides the basic material (containing SiO2) increased fracture toughness (not less than 12 MPa m1/2), and near surface layer (not containing SiO2) high hardness (not less than 14 GPa).

Sobre autores

A. Dmitrievskiy

Derzhavin Tambov State University

Autor responsável pela correspondência
Email: aadmitr@yandex.ru
392000 Russia, Tambov

D. Zhigacheva

Derzhavin Tambov State University

Email: aadmitr@yandex.ru
392000 Russia, Tambov

N. Efremova

Derzhavin Tambov State University

Email: aadmitr@yandex.ru
392000 Russia, Tambov

V. Vasyukov

Derzhavin Tambov State University

Email: aadmitr@yandex.ru
392000 Russia, Tambov

G. Grigoriev

Derzhavin Tambov State University

Email: aadmitr@yandex.ru
392000 Russia, Tambov

Bibliografia

  1. Surface Modification of Biomaterials. Methods Analysis and Applications / Ed. Williams R. Woodhead Publishing, 2011.
  2. Surface Modification by Solid State Processing / Ed. Miranda R. Woodhead Publishing, 2014.
  3. Jain I.P., Agarwal G. // Surf. Sci. Rep. 2011. V. 66. P. 77. https://doi.org/10.1016/j.surfrep.2010.11.001
  4. Egerton R.F // Micron. 2019. V. 119. P. 72. https://doi.org/10.1016/j.micron.2019.01.005
  5. Ushakov I.V. // Proc. SPIE. Nanodesign Technol. Computer Simulations. 2007. V. 6597. P. 659714. https://doi.org/10.1117/12.726773
  6. Ushakov I.V., Feodorov V.A., Permyakova I.J. // Proc. SPIE. Int. Soc. Optical Engineer. 2004. V. 5400. P. 265. https://doi.org/10.1117/12.555529
  7. Tao F., Liu Y., Ren X., Wang J., Zhou Y., Miao Y., Ren F., Wei Sh., Ma J. // J. Energy Chem. 2022. V. 66. P. 397. https://doi.org/10.1016/j.jechem.2021.08.022
  8. Alagatu A., Dhapade D., Gajbhiye M., Panjrekar R., Raut A. // Mater. Today: Proc. 2022. V. 60. P. 2245. https://doi.org/10.1016/j.matpr.2022.03.338
  9. Koizumi M. // Ceram. Eng. Sci. Proc. 1992. V. 13. P. 333. https://doi.org/10.1002/9780470313954.ch33
  10. Miyamoto Y., Kaisser W., Rabin B.H., Kawasaki A., Ford R.G. Functionally Graded Materials: Design, Processing, and Applications. New York: Springer Science & Business Media, 1999.
  11. Pasha A., Rajaprakash B.M. // Mater. Today: Proc. 2022. V. 52. P. 379. https://doi.org/10.1016/j.matpr.2021.09.066
  12. Sun J., Ye D., Zou J., Chen X., Wang Y., Yuan J., Liang H., Qu H., Binner J., Bai J. // J. Mater. Sci. Technol. 2023. V. 138. P. 1. https://doi.org/10.1016/j.jmst.2022.06.039
  13. Sam M., Jojith R., Radhika N. // J. Manuf. Process. 2021. V. 68. P. 1339. https://doi.org/10.1016/j.jmapro.2021.06.062
  14. Besisa D.H.A., Ewais E.M.M. // Mater. Res. Express. 2019. V. 6. P. 075516. https://doi.org/10.1088/2053-1591/ab177e
  15. Ewais E.M.M., Besisa D.H.A., Zaki Z.I., Kandil A.E.H.T. // J. Eur. Ceram. Soc. 2012. V. 32. P. 1561. https://doi.org/10.1016/j.jeurceramsoc.2012.01.016
  16. Dmitrievskii A.A., Zhigachev A.O., Zhigacheva D.G., Rodaev V.V. // Tech. Phys. 2020. V. 65. № 12. P. 2016. https://doi.org/10.1134/S1063784220120075
  17. Dmitrievskiy A.A., Zhigacheva D.G., Vasyukov V.M., Ovchinnikov P.N. // J. Phys. Conf. Ser. 2021. V. 2103. P. 012075. https://doi.org/10.1088/1742-6596/2103/1/012075
  18. Dmitrievskiy A.A., Zhigacheva D.G., Grigoriev G.V., Ovchinnikov P.N. // J. Surf. Invest. X-Ray. Synchrotron and Neutron Techn. 2021. V. 15. V. 1. P. S137. https://doi.org/10.1134/S1027451022020264
  19. Anstis G.R., Chantikul P., Lawn B.R., Marshall D.B. // J. Am. Ceram. Soc. 1981. V. 64. № 9. P. 533. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  20. Zhang F., Lin L.F., Wang E.Z. // Ceram. Int. 2015. V. 41. P. 2417. https://doi.org/10.1016/j.ceramint.2015.06.081
  21. Garvie R.C., Hannink R.H.J., Pascoe R.T. // Nature. 1975. V. 258. P. 703. https://doi.org/10.1038/258703a0
  22. Hannink R.H.J., Kelly P.M., Muddle B.C. // J. Am. Ceram. Soc. 2000. V. 83. № 3. P. 461.https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (778KB)

Declaração de direitos autorais © А.А. Дмитриевский, Д.Г. Жигачева, Н.Ю. Ефремова, В.М. Васюков, Г.В. Григорьев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies