Electronic Structure of Tin Dioxide Thin Films

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electronic structure of tin dioxide (001) nanofilms in a wide range of thicknesses has been modeled by the method of linearized coupled plane waves in the framework of the density functional theory in the generalized gradient approximation. The spectra of the total and local partial densities of electronic states characterizing the electronic structure of atoms spread out in various layers of the films under consideration are calculated. It is shown that the influence of the surface leads to the appearance of energy features of the density of states localized in the bang gap. A model describing the layered transformation of the electronic structure during the transition from the surface to the volume of the crystal SnO2 is proposed. A film (001) with a thickness of 8 elementary cells for SnO2 is considered as a model object. It is found that the surface electronic states arising in the band gap in SnO2(001) films are spatially strongly localized – their density drops to almost zero by the third atomic layer from the surface. The applicability of the combined use of the layered superlattice method and the core hole method for modeling X-ray absorption spectra in nanofilms is considered. It is established that when calculating the XANES spectra for atoms in the surface layer of SnO2 nanofilms, the influence exerted by the surface is significantly greater than the influence exerted by the core hole. Therefore, when calculating the XANES spectra for atoms in the surface layer of nanofilms, the core hole can be neglected in the first approximation.

Sobre autores

M. Manyakin

Voronezh State University

Autor responsável pela correspondência
Email: manyakin@phys.vsu.ru
Russia, 394018, Voronezh

S. Kurganskii

Voronezh State University

Email: manyakin@phys.vsu.ru
Russia, 394018, Voronezh

Bibliografia

  1. Orlandi M.O. Tin Oxide Materials Synthesis, Properties, and Applications. Elsevier Inc., 2020. 628 p.
  2. Nascimento E.P., Firmino H.C.T., Neves G.A., Menezes R.R. // Ceram. Int. 2022. V. 48. Iss. 6. P. 7405. http://doi.org./10.1016/j.ceramint.2021.12.123
  3. Dalapati G.K., Sharma H., Guchhait A., Chakrabarty N., Bamola P., Liu Q., Saianand G., Krishna A.M.S., Mukhopadhyay S., Dey A., Wong T.K.S., Zhuk S., Ghosh S., Chakrabortty S., Mahata C., Biring S., Kumar A., Ribeiro C.S., Ramakrishna S., Chakraborty A.K., Krishnamurthy S., Sonar P., Sharma M. // J. Mater. Chem. A. 2021. V. 9. Iss. 31. P. 16621. http://doi.org./10.1039/D1TA01291F
  4. Nwanna E.C., Imoisili P.E., Jen T.-C. // J. King Saud University – Sci. 2022. V. 34. Iss. 5. P. 102123. http://doi.org./10.1016/j.jksus.2022.102123
  5. Feng X., Ma J., Yang F., Ji F., Zong F., Luan C., Ma H. // Solid State Comm. 2007. V. 144. Iss. 7–8. P. 269. http://doi.org./10.1016/j.ssc.2007.07.028
  6. Luan C., Ma J., Yu X., Zhu Z., Mi W., Lv Y. // Vacuum. 2012. V. 86. Iss. 9. P. 1333. http://doi.org./10.1016/j.vacuum.2011.12.009
  7. Godin T.J., LaFemina J.P. // Phys. Rev. B. 1993. V. 47. Iss. 11. P. 6518. http://doi.org./10.1103/PhysRevB.47.6518
  8. Maki-Jaskari M.A., Rantala T.T. // Phys. Rev. B. 2002. V. 65. Iss. 24. P. 245428. http://doi.org./10.1103/PhysRevB.65.245428
  9. Duan Y. // Phys. Rev. B. 2008. V. 77. Iss. 4. P. 045332. http://doi.org./10.1103/PhysRevB.77.045332
  10. Floriano E.A., de Andrade Scalvi L.V., Sambrano J.R., Geraldo V. // Mater. Res. 2010. V. 13. № 4. P. 437. http://doi.org./10.1590/S1516-14392010000400004
  11. Mounkachi O., Salmani E., Lakhal M., Ez-Zahraouy H., Hamedoun M., Benaissa M., Kara A., Ennaoui A., Benyoussef A. // Solar Energy Mater. Solar Cells. 2016. V. 148. P. 34. http://doi.org./10.1016/j.solmat.2015.09.062
  12. Wang M., Feng T., Ren J., Gao L., Li H., Hao Z., Yue Y., Zhou T., Hou D. // J. Phys. Chem. Solids. 2022. V. 163. P. 110586. http://doi.org./10.1016/j.jpcs.2022.110586
  13. Dos Santos S.B.O., Boratto M.H., Ramos Jr. R.A., Scalvi L.V.A. // Mater. Chem. Phys. 2022. V. 278. P. 125571. http://doi.org./10.1016/j.matchemphys.2021.125571
  14. Кристаллографическая и кристаллохимическая База данных для минералов и их структурных аналогов. (2022) Институт экспериментальной минералогии РАН. http://database.iem.ac.ru/mincryst/. Дата посещения 15.12.2022
  15. Бекенев В.Л., Зубкова С.М. // ФТП. 2017. Т. 51. Вып. 1. С. 26. http://doi.org./10.21883/FTP.2017.01.43991.8226
  16. Манякин М.Д., Курганский С.И., Дубровский О.И., Лихачев Е.Р. // Конденсированные среды и межфазные границы. 2017. Т. 19. № 4. С. 542. http://doi.org./10.17308/kcmf.2017.19/235
  17. Chen J.G. // Surf. Sci. Rep. 1997. V. 30. Iss. 1–3. P. 1. http://doi.org./10.1016/S0167-5729(97)00011-3
  18. Hebert C., Luitz J., Schattschneider P. // Micron. 2003. V. 34. Iss. 3–5. P. 219. http://doi.org./10.1016/s0968-4328(03)00030-1
  19. Mizoguchi T., Tanaka I., Yoshioka S., Kunisu M., Yamamoto T., Ching W.Y. // Phys. Rev. B. 2004. V. 70. Iss. 4. P. 045103. http://doi.org./10.1103/PhysRevB.70.045103
  20. Курганский С.И., Манякин М.Д., Дубровский О.И., Чувенкова О.А., Турищев С.Ю., Домашевская Э.П. // ФТТ. 2014. Т. 56. № 9. С. 1690. http://doi.org./10.1134/S1063783414090170
  21. Manyakin M.D., Kurganskii S.I., Dubrovskii O.I., Chuvenkova O.A., Domashevskaya E.P., Ryabtsev S.V., Ovsyannikov R., Parinova E.V., Sivakov V., Turishchev S.Yu. // Mater. Sci. Semicond. Proc. 2019. V. 99. P. 28. http://doi.org./10.1016/j.mssp.2019.04.006
  22. Blaha P., Schwarz K., Tran F., Laskowski R., Madsen G.K.H., Marks L.D. // J. Chem. Phys. 2020. V. 152. P. 074101. http://doi.org./10.1063/1.5143061
  23. Perdew J.P., Yue W. // Phys. Rev. B. 1986. V. 33. Iss. 12. P. 8800. http://doi.org./10.1103/PhysRevB.33.8800
  24. Tang P., Ren S., Zhang J., Wua L., Li W., Li B., Zeng G., Wang W., Liu C., Feng L. // Mater. Sci. Semicond. Proc. 2020. V. 113. P. 105020. http://doi.org./10.1016/j.mssp.2020.105020
  25. Manyakin M.D., Kurganskii S.I. // J. Phys.: Conf. Ser. 2020. V. 1658. P. 012032. http://doi.org./10.1088/1742-6596/1658/1/012032
  26. Wen Z., Tian-mo L., Xiao-fei L. // Physica B: Cond. Matter. 2010. V. 405. P. 3458. http://doi.org./10.1016/j.physb.2010.05.023
  27. Kufner S., Schleife A., Hoffling B., Bechstedt F. // Phys. Rev. B. 2012. V. 86. P. 075320. http://doi.org./10.1103/PhysRevB.86.075320
  28. Rachut K., Körber C., Brötz J., Klein A. // Phys. Status Solidi A. 2014. V. 211. Iss. 9. P. 1997. http://doi.org./10.1002/pssa.201330367
  29. Akgul F.A., Gumus C., Er A.O., Farha A.H., Akgul G., Ufuktepe Y., Liu Z. // J. Alloys Compd. 2013. V. 579. P. 50. http://doi.org./10.1016/j.jallcom.2013.05.057
  30. Sanjines R., Coluzza C., Rosenfeld D., Gozzo F., Almeras Ph., Levy F., Margaritondo G. // J. Appl. Phys. 1993. V. 73. Iss. 8. P. 3997. http://doi.org./10.1063/1.352865
  31. Nagasawa Y., Choso T., Karasuda T., Shimomura S., Ouyang F., Tabata K., Yamaguchi Y. // Surf. Sci. 1999. V. 433–435. P. 226. http://doi.org./10.1016/S0039-6028(99)00044-8

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (198KB)
3.

Baixar (328KB)
4.

Baixar (399KB)
5.

Baixar (301KB)
6.

Baixar (195KB)

Declaração de direitos autorais © М.Д. Манякин, С.И. Курганский, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies